
RF24Network library
Release 1.0.16

nRF24

Nov 28, 2021

API REFERENCE

1 Purpose/Goal 3

2 News 5

3 Features 7
3.1 The layer provides . 7
3.2 The layer does not provide . 7

4 How to learn more 9
4.1 Additional Information & Add-ons . 9

5 Topology for Mesh Networks using nRF24L01(+) 11

6 Octal Addressing and Topology 13

7 How routing is handled 15

8 Starting up a node 17

9 Directionality 19

10 Site Index 21
10.1 RF24Network class . 21
10.2 Network Payload Structures . 29
10.3 RF24Network_config.h . 32
10.4 Deprecated API . 33
10.5 Related Pages . 33
10.6 Reserved System Message Types . 40
10.7 Examples . 42

Index 77

i

ii

RF24Network library, Release 1.0.16

This class implements an OSI Network Layer using nRF24L01(+) radios driven by the newly optimized RF24 library
fork.

RF24 Library docs for general RF24 configuration and setup.

• Linux Installation and General Linux/RPi configuration and setup documentation

API REFERENCE 1

http://en.wikipedia.org/wiki/Network_layer
http://nRF24.github.com/RF24/
http://nRF24.github.com/RF24/
http://nRF24.github.io/RF24/
http://nRF24.github.io/RF24/md_docs_linux_install.html
http://nRF24.github.io/RF24/md_docs_rpi_general.html

RF24Network library, Release 1.0.16

2 API REFERENCE

CHAPTER

ONE

PURPOSE/GOAL

Original: Create an alternative to ZigBee radios for Arduino communication.

New: Enhance the current functionality for maximum efficiency, reliability, and speed

Xbees are excellent little radios, backed up by a mature and robust standard protocol stack. They are also expensive.

For many Arduino uses, they seem like overkill. So I am working to improve the current standard for nRF24L01 radios.
The best RF24 modules are available for less than $6 from many sources. With the RF24Network layer, I hope to cover
many common communication scenarios.

Please see TMRh20’s blog post for a comparison against the ZigBee protocols

3

https://tmrh20.blogspot.com/2019/05/comparative-performance-analysis.html

RF24Network library, Release 1.0.16

4 Chapter 1. Purpose/Goal

CHAPTER

TWO

NEWS

Please see the recent changes listed in the github releases page

5

https://github.com/nRF24/RF24Network/releases

RF24Network library, Release 1.0.16

6 Chapter 2. News

CHAPTER

THREE

FEATURES

3.1 The layer provides

• Network ACKs: Efficient acknowledgement of network-wide transmissions, via dynamic radio acks and network
protocol acks.

• Updated addressing standard for optimal radio transmission.

• Extended timeouts and staggered timeout intervals. The new txTimeout variable allows fully automated extended
timeout periods via auto-retry/auto-reUse of payloads.

• Optimization to the core library provides improvements to reliability, speed and efficiency. See RF24 library
documentation for more info.

• Built in sleep mode using interrupts. (Still under development enable via RF24Network_config.h)

• Host Addressing. Each node has a logical address on the local network.

• Message Forwarding. Messages can be sent from one node to any other, and this layer will get them there no
matter how many hops it takes.

• Ad-hoc Joining. A node can join a network without any changes to any existing nodes.

3.2 The layer does not provide

• Dynamic address assignment (See RF24Mesh)

• Layer 4 protocols (TCP/IP - See RF24Ethernet and RF24Gateway)

7

https://nRF24.github.io/RF24
https://nRF24.github.io/RF24
https://github.com/nRF24/RF24Mesh
https://github.com/nRF24/RF24Ethernet
https://github.com/nRF24/RF24Gateway

RF24Network library, Release 1.0.16

8 Chapter 3. Features

CHAPTER

FOUR

HOW TO LEARN MORE

• RF24Network Class Documentation

• Advanced Configuration Options

• Addressing format

• Topology and Overview

• Download Current Development Package

• Examples Page. Start with helloworld_* examples.

4.1 Additional Information & Add-ons

• RF24Mesh: Dynamic Mesh Layer for RF24Network Dev

• RF24Ethernet: TCP/IP over RF24Network

• TMRh20’s Blog: RF24 Optimization Overview

• TMRh20’s Blog: RF24 Wireless Audio

• RF24: Original Author

9

classRF24Network.html
md_docs_advanced_config.html
md_docs_addressing.html
md_docs_tuning.html
https://github.com/TMRh20/RF24Network/archive/Development.zip
examples.html
https://github.com/nRF24/RF24Mesh
https://github.com/nRF24/RF24Ethernet
http://tmrh20.blogspot.com/2014/03/high-speed-data-transfers-and-wireless.html
http://tmrh20.blogspot.com/2014/03/arduino-radiointercomwireless-audio.html
http://maniacbug.github.com/RF24/

RF24Network library, Release 1.0.16

10 Chapter 4. How to learn more

CHAPTER

FIVE

TOPOLOGY FOR MESH NETWORKS USING NRF24L01(+)

This network layer takes advantage of the fundamental capability of the nRF24L01(+) radio to listen actively to up to
6 other radios at once. The network is arranged in a Tree Topology, where one node is the base, and all other nodes are
children either of that node, or of another. Unlike a true mesh network, multiple nodes are not connected together, so
there is only one path to any given node.

11

http://en.wikipedia.org/wiki/Network_Topology#Tree

RF24Network library, Release 1.0.16

12 Chapter 5. Topology for Mesh Networks using nRF24L01(+)

CHAPTER

SIX

OCTAL ADDRESSING AND TOPOLOGY

Each node must be assigned an 15-bit address by the administrator. This address exactly describes the position of the
node within the tree. The address is an octal number. Each digit in the address represents a position in the tree further
from the base.

• Node 00 is the base node.

• Nodes 01-05 are nodes whose parent is the base.

• Node 021 is the second child of node 01.

• Node 0321 is the third child of node 021, an so on.

• The largest node address is 05555, so up to 781 nodes are allowed on a single channel. An example topology is
shown below, with 5 nodes in direct communication with the master node, and multiple leaf nodes spread out at
a distance, using intermediate nodes to reach other nodes.

![](https://github.com/nRF24/RF24Network/blob/CMake-4-Linux/images/example_tree.svg)

13

https://github.com/nRF24/RF24Network/blob/CMake-4-Linux/images/example_tree.svg

RF24Network library, Release 1.0.16

14 Chapter 6. Octal Addressing and Topology

CHAPTER

SEVEN

HOW ROUTING IS HANDLED

When sending a message using RF24Network::write(), you fill in the header with the logical node address. The network
layer figures out the right path to find that node, and sends it through the system until it gets to the right place. This
works even if the two nodes are far separated, as it will send the message down to the base node, and then back out to
the final destination.

All of this work is handled by the RF24Network::update() method, so be sure to call it regularly or your network will
miss packets.

15

RF24Network library, Release 1.0.16

16 Chapter 7. How routing is handled

CHAPTER

EIGHT

STARTING UP A NODE

When a node starts up, it only has to contact its parent to establish communication. No direct connection to the Base
node is needed. This is useful in situations where relay nodes are being used to bridge the distance to the base, so leaf
nodes are out of range of the base.

17

RF24Network library, Release 1.0.16

18 Chapter 8. Starting up a node

CHAPTER

NINE

DIRECTIONALITY

By default all nodes are always listening, so messages will quickly reach their destination.

You may choose to sleep any nodes on the network if using interrupts. This is useful in a case where the nodes
are operating on batteries and need to sleep. This greatly decreases the power requirements for a sensor network.
The leaf nodes can sleep most of the time, and wake every few minutes to send in a reading. Routing nodes can be
triggered to wake up whenever a payload is received See RF24Network::sleepNode() in the class documentation, and
RF24Network_config.h to enable sleep mode.

19

RF24Network library, Release 1.0.16

20 Chapter 9. Directionality

CHAPTER

TEN

SITE INDEX

Site index

10.1 RF24Network class

class RF24Network

RF24Network::RF24Network(RF24 &_radio)
Construct the network

Parameters _radio – The underlying radio driver instance

See also:

Use the RF24 class to create the radio object.

10.1.1 Basic API

inline void RF24Network::begin(uint16_t _node_address)
Bring up the network using the current radio frequency/channel. Calling begin brings up the network, and
configures the address, which designates the location of the node within RF24Network topology.

Example 1: Begin on current radio channel with address 0 (master node)

network.begin(00);

Example 2: Begin with address 01 (child of master)

network.begin(01);

Example 3: Begin with address 011 (child of 01, grandchild of master)

network.begin(011);

See begin(uint8_t _channel, uint16_t _node_address)

Note: Node addresses are specified in Octal format, see RF24Network Addressing for more information. The
address 04444 is reserved for RF24Mesh usage (when a mesh node is connecting to the network).

21

https://rf24.readthedocs.io/en/latest/classRF24.html#_CPPv44RF24
https://rf24.readthedocs.io/en/latest/classRF24.html#_CPPv44RF24
md_docs_tuning.html
md_docs_addressing.html

RF24Network library, Release 1.0.16

Warning: Be sure to first call RF24::begin() to initialize the radio properly.

Parameters _node_address – The logical address of this node.

void RF24Network::begin(uint8_t _channel, uint16_t _node_address)
Bring up the network on a specific radio frequency/channel.

Deprecated:
Use RF24::setChannel() to configure the radio channel. Use RF24Network::begin(uint16_t
_node_address) to set the node address.

Example 1: Begin on channel 90 with address 0 (master node)

network.begin(90, 0);

Example 2: Begin on channel 90 with address 01 (child of master)

network.begin(90, 01);

Example 3: Begin on channel 90 with address 011 (child of 01, grandchild of master)

network.begin(90, 011);

Parameters

• _channel – The RF channel to operate on.

• _node_address – The logical address of this node.

uint8_t RF24Network::update(void)
Main layer loop

This function must be called regularly to keep the layer going. This is where payloads are re-routed, received,
and all the action happens.

Returns Returns the RF24NetworkHeader::type of the last received payload.

bool RF24Network::available(void)
Test whether there is a message available for this node

Returns Whether there is a message available for this node

uint16_t RF24Network::read(RF24NetworkHeader &header, void *message, uint16_t maxlen =
MAX_PAYLOAD_SIZE)

Read a message

Note: This function assumes there is a frame in the queue.

while (network.available()) {
RF24NetworkHeader header;
uint32_t time;
uint16_t msg_size = network.peek(header);
if (header.type == 'T') {
network.read(header, &time, sizeof(time));
Serial.print("Got time: ");
Serial.println(time);

(continues on next page)

22 Chapter 10. Site Index

RF24Network library, Release 1.0.16

(continued from previous page)

}
}

Parameters

• header – [out] The RF24NetworkHeader (envelope) of this message

• message – [out] Pointer to memory where the message should be placed

• maxlen – The largest message size which can be held in message . If this parameter is left
unspecified, the entire length of the message is fetched. Hint: Use peek(RF24NetworkHeader
&) to get the length of next available message in the queue.

Returns The total number of bytes copied into message

bool RF24Network::write(RF24NetworkHeader &header, const void *message, uint16_t len)
Send a message

uint32_t time = millis();
uint16_t to = 00; // Send to master
RF24NetworkHeader header(to, 'T'); // Send header type 'T'
network.write(header, &time, sizeof(time));

Note: RF24Network now supports fragmentation for very long messages, send as normal. Fragmentation may
need to be enabled or configured by editing the RF24Network_config.h file. Default max payload size is 120
bytes.

Parameters

• header – [inout] The header (envelope) of this message. The critical thing to fill in is the
to_node field so we know where to send the message. It is then updated with the details of
the actual header sent.

• message – Pointer to memory where the message is located

• len – The size of the message

Returns Whether the message was successfully received

uint16_t RF24Network::peek(RF24NetworkHeader &header)
Read the next available header

Reads the next available header without advancing to the next incoming message. Useful for doing a switch on
the message type.

Parameters header – [out] The RF24NetworkHeader (envelope) of the next message. If there is no
message available, the referenced header object is not touched

Returns The length of the next available message in the queue.

void RF24Network::peek(RF24NetworkHeader &header, void *message, uint16_t maxlen =
MAX_PAYLOAD_SIZE)

Read the next available payload

10.1. RF24Network class 23

RF24Network library, Release 1.0.16

Reads the next available payload without advancing to the next incoming message. Useful for doing a transparent
packet manipulation layer on top of RF24Network.

Parameters

• header – [out] The RF24NetworkHeader (envelope) of this message

• message – [out] Pointer to memory where the message should be placed

• maxlen – Amount of bytes to copy to message . If this parameter is left unspecified, the
entire length of the message is fetched. Hint: Use peek(RF24NetworkHeader) to get the
length of next available message in the queue.

10.1.2 Advanced API

void RF24Network::failures(uint32_t *_fails, uint32_t *_ok)
Return the number of failures and successes for all transmitted payloads, routed or sent directly

bool fails, success;
network.failures(&fails, &success);

Note: This needs to be enabled via #define ENABLE_NETWORK_STATS in RF24Network_config.h

bool RF24Network::multicast(RF24NetworkHeader &header, const void *message, uint16_t len, uint8_t level =
7)

Send a multicast message to multiple nodes at once Allows messages to be rapidly broadcast through the network

Multicasting is arranged in levels, with all nodes on the same level listening to the same address Levels are
assigned by network level ie: nodes 01-05: Level 1, nodes 011-055: Level 2

See

• multicastLevel()

• multicastRelay

Parameters

• header – reference to the RF24NetworkHeader object used for this message

• message – Pointer to memory where the message is located

• len – The size of the message

• level – Multicast level to broadcast to. If this parameter is unspecified, then the node’s
current multicastLevel() is used.

Returns Whether the message was successfully sent

bool RF24Network::write(RF24NetworkHeader &header, const void *message, uint16_t len, uint16_t
writeDirect)

Writes a direct (unicast) payload. This allows routing or sending messages outside of the usual routing paths. The
same as write, but a physical address is specified as the last option. The payload will be written to the physical
address, and routed as necessary by the recipient.

bool RF24Network::sleepNode(unsigned int cycles, int interruptPin, uint8_t INTERRUPT_MODE = 0)

Sleep this node - For AVR devices only

24 Chapter 10. Site Index

RF24Network library, Release 1.0.16

The node can be awoken in two ways, both of which can be enabled simultaneously:

a. An interrupt - usually triggered by the radio receiving a payload. Must use pin 2 (interrupt 0) or 3 (interrupt
1) on Uno, Nano, etc.

b. The watchdog timer waking the MCU after a designated period of time, can also be used instead of delays
to control transmission intervals.

if(!network.available())
network.sleepNode(1, 0); // Sleep the node for 1 second or a payload is received

// Other options:
network.sleepNode(0, 0); // Sleep this node for the designated time period, or␣
→˓a payload is received.
network.sleepNode(1, 255); // Sleep this node for 1 cycle. Do not wake up until␣
→˓then, even if a payload is received (no interrupt)

Note: NEW - Nodes can now be slept while the radio is not actively transmitting. This must be manually
enabled by uncommenting the #define ENABLE_SLEEP_MODE in RF24Network_config.h

Note: The watchdog timer should be configured in the sketch’s setup() if using sleep mode. This function
will sleep the node, with the radio still active in receive mode. See setup_watchdog().

Parameters

• cycles – The node will sleep in cycles of 1s. Using 2 will sleep 2 WDT cycles, 3 sleeps
3WDT cycles. . .

• interruptPin – The interrupt number to use (0, 1) for pins 2 and 3 on Uno & Nano. More
available on Mega etc. Setting this parameter to 255 will disable interrupt wake-ups.

• INTERRUPT_MODE – an identifying number to indicate what type of state for which the
interrupt_pin will be used to wake up the radio.

INTERRUPT_MODE type of state
0 LOW
1 RISING
2 FALLING
3 CHANGE

Returns True if sleepNode completed normally, after the specified number of cycles. False if sleep
was interrupted

uint16_t RF24Network::parent() const
This node’s parent address

Returns This node’s parent address, or 65535 (-1 when casted to a signed int16_t) if this is the master
node.

uint16_t RF24Network::addressOfPipe(uint16_t node, uint8_t pipeNo)
Provided a node address and a pipe number, will return the RF24Network address of that child pipe for that node.

10.1. RF24Network class 25

RF24Network library, Release 1.0.16

bool RF24Network::is_valid_address(uint16_t node)
Validate a network address as a proper logical address

Remark This function will validate an improper address of 0100 as it is the reserved NET-
WORK_MULTICAST_ADDRESS used for multicasted messages.

Note: Addresses are specified in octal form, ie 011, 034. Review RF24Nettwork addressing for more informa-
tion.

Parameters node – The specified logical address of a network node.

Returns True if the specified node address is a valid network address, otherwise false.

10.1.3 Configuration API

bool RF24Network::multicastRelay
Enabling this will allow this node to automatically forward received multicast frames to the next highest multicast
level. Forwarded frames will also be enqueued on the forwarding node as a received frame.

This is disabled by default.

See multicastLevel()

uint32_t RF24Network::txTimeout
Network timeout value.

Sets the timeout period for individual payloads in milliseconds at staggered intervals. Payloads will be re-
tried automatically until success or timeout. Set to 0 to use the normal auto retry period defined by radio.
setRetries().

Note: This value is automatically assigned based on the node address to reduce errors and increase throughput
of the network.

uint16_t RF24Network::routeTimeout
Timeout for routed payloads.

This only affects payloads that are routed through one or more nodes. This specifies how long to wait for an ack
from across the network. Radios sending directly to their parent or children nodes do not utilize this value.

void RF24Network::multicastLevel(uint8_t level)
By default, multicast addresses are divided into 5 network levels:

• The master node is the only node on level 0 (the lowest level)

• Nodes 01-05 (level 1) share a multicast address

• Nodes 0n1-0n5 (level 2) share a multicast address

• Nodes 0n11-0n55 (level 3) share a multicast address

• Nodes 0n111-0n555 (level 4) share a multicast address

26 Chapter 10. Site Index

md_docs_addressing.html

RF24Network library, Release 1.0.16

Notice “n” (used in the list above) stands for an octal digit in range [0, 5]

This optional function is used to override the default level set when a node’s logical address changes, and it can
be used to create custom multicast groups that all share a single address.

See

• multicastRelay

• multicast()

• The topology image

Parameters level – Levels 0 to 4 are available. All nodes at the same level will receive the same
messages if in range. Messages will be routed in order of level, low to high, by default.

void RF24Network::setup_watchdog(uint8_t prescalar)

Set up the watchdog timer for sleep mode using the number 0 through 10 to represent the following time periods:

wdt_16ms = 0, wdt_32ms, wdt_64ms, wdt_128ms, wdt_250ms, wdt_500ms, wdt_1s, wdt_2s, wdt_4s, wdt_8s

setup_watchdog(7); // Sets the WDT to trigger every second

Parameters prescalar – The WDT prescaler to define how often the node will wake up. When
defining sleep mode cycles, this time period is 1 cycle.

10.1.4 External Applications/Systems

Interface for External Applications and Systems (RF24Mesh, RF24Ethernet)

uint8_t RF24Network::frame_buffer[MAX_FRAME_SIZE]
The raw system frame buffer.

This member can be accessed to retrieve the latest received data just after it is enqueued. This buffer is also used
for outgoing data.

Note: The first 8 bytes of this buffer is latest handled frame’s RF24NetworkHeader data.

Warning: Conditionally, this buffer may only contain fragments of a message (either outgoing or incoming).

std::queue<RF24NetworkFrame> RF24Network::external_queue
Linux platforms only

Data with a header type of EXTERNAL_DATA_TYPE will be loaded into a separate queue. The data can be
accessed as follows:

RF24NetworkFrame f;
while(network.external_queue.size() > 0) {
f = network.external_queue.front();
uint16_t dataSize = f.message_size;

(continues on next page)

10.1. RF24Network class 27

http://github.com/nRF24/RF24Network/blob/master/images/topologyImage.jpg

RF24Network library, Release 1.0.16

(continued from previous page)

// read the frame message buffer
memcpy(&myBuffer, &f.message_buffer, dataSize);
network.external_queue.pop();

}

RF24NetworkFrame *RF24Network::frag_ptr
ARDUINO platforms only

The frag_ptr is only used with Arduino (not RPi/Linux) and is mainly used for external data systems like
RF24Ethernet. When a payload of type EXTERNAL_DATA_TYPE is received, and returned from update(), the
frag_ptr will always point to the starting memory location of the received frame.

This is used by external data systems (RF24Ethernet) to immediately copy the received data to a buffer, without
using the user-cache.

uint8_t return_type = network.update();
if(return_type == EXTERNAL_DATA_TYPE) {

memcpy(&myDataBuffer, network.frag_ptr->message_buffer, network.frag_ptr->
→˓message_size);
}

Linux devices (defined as RF24_LINUX) currently cache all payload types, and do not utilize frag_ptr.

See RF24NetworkFrame

bool RF24Network::returnSysMsgs
Variable to determine whether update() will return after the radio buffers have been emptied (DEFAULT), or
whether to return immediately when (most) system types are received.

As an example, this is used with RF24Mesh to catch and handle system messages without loading them into the
user cache.

The following reserved/system message types are handled automatically, and not returned.

System Message Types
(Not Returned)

NETWORK_ADDR_RESPONSE
NETWORK_ACK
NETWORK_PING
NETWORK_POLL (With multicast enabled)
NETWORK_REQ_ADDRESS

uint8_t RF24Network::networkFlags
Network Flags allow control of data flow

Incoming Blocking: If the network user-cache is full, lets radio cache fill up. Radio ACKs are not sent when
radio internal cache is full.

28 Chapter 10. Site Index

RF24Network library, Release 1.0.16

This behaviour may seem to result in more failed sends, but the payloads would have otherwise been dropped
due to the cache being full.

FLAGS Value Description
FLAG_FAST_FRAG4 (bit 2 as-

serted)
INTERNAL: Replaces the fastFragTransfer variable, and allows for faster
transfers between directly connected nodes.

FLAG_NO_POLL8 (bit 3 as-
serted)

EXTERNAL/USER: Disables NETWORK_POLL responses on a node-by-
node basis.

Note: Bit posistions 0 & 1 in the networkFlags byte are no longer used as they once were during experimental
development.

Protected Members

These members are accessible by RF24Network derivatives.

uint8_t RF24Network::_multicast_level
The current node’s network level (used for multicast TX/RX-ing).

See Use multicastLevel() to adjust this when needed.

uint16_t RF24Network::node_address
Logical node address of this unit, typically in range [0, 2925] (that’s [0, 05555] in octal).

Note: The values 0 represents the network master node. Additionally, the value 1 is occupied when using
RF24Ethernet layer.

10.2 Network Payload Structures

struct RF24NetworkFrame
Frame structure for internal message handling, and for use by external applications

The actual frame put over the air consists of a header (8-bytes) and a message payload (Up to 24-bytes)

When data is received, it is stored using the RF24NetworkFrame structure, which includes:

a. The header containing information about routing the message and the message type

b. The size of the included message

c. The ‘message’ or data being received

10.2. Network Payload Structures 29

RF24Network library, Release 1.0.16

Public Functions

inline RF24NetworkFrame()
Default constructor

Simply constructs a blank frame. Frames are generally used internally. See RF24NetworkHeader.

inline RF24NetworkFrame(RF24NetworkHeader &_header, const void *_message = NULL, uint16_t _len =
0)

Constructor for Linux platforms - create a network frame with data Frames are constructed and handled
differently on Arduino/AVR and Linux devices (#if defined RF24_LINUX)

Frames are used internally and by external systems. See RF24NetworkHeader.

Parameters

• _header – The RF24Network header to be stored in the frame

• _message – The ‘message’ or data.

• _len – The size of the ‘message’ or data.

inline RF24NetworkFrame(RF24NetworkHeader &_header, uint16_t _message_size)
Constructor for Arduino/AVR/etc. platforms - create a network frame with data Frames are constructed
and handled differently on Arduino/AVR and Linux devices (#if defined RF24_LINUX)

Frames are used internally and by external systems. See RF24NetworkHeader.

See RF24Network.frag_ptr

Parameters

• _header – The RF24Network header to be stored in the frame

• _message_size – The size of the ‘message’ or data

Public Members

RF24NetworkHeader header
Header which is sent with each message

uint16_t message_size
The size in bytes of the payload length

uint8_t *message_buffer
On Arduino, the message buffer is just a pointer, and can be pointed to any memory location. On Linux the
message buffer is a standard byte array, equal in size to the defined MAX_PAYLOAD_SIZE

struct RF24NetworkHeader
Header which is sent with each message

The frame put over the air consists of this header and a message

Headers are addressed to the appropriate node, and the network forwards them on to their final destination.

30 Chapter 10. Site Index

RF24Network library, Release 1.0.16

Public Functions

inline RF24NetworkHeader()
Default constructor

Simply constructs a blank header

inline RF24NetworkHeader(uint16_t _to, unsigned char _type = 0)
Send constructor

Fragmentation is enabled by default for all devices except ATTiny

Configure fragmentation and max payload size in RF24Network_config.h

Use this constructor to create a header and then send a message

uint16_t recipient_address = 011;

RF24NetworkHeader header(recipient_address, 't');

network.write(header, &message, sizeof(message));

Note: Now supports automatic fragmentation for very long messages, which can be sent as usual if frag-
mentation is enabled.

Parameters

• _to – The Octal format, logical node address where the message is going

• _type – The type of message which follows. Only 0 - 127 are allowed for user messages.
Types 1 - 64 will not receive a network acknowledgement.

const char *toString(void) const
Create debugging string

Useful for debugging. Dumps all members into a single string, using internal static memory. This memory
will get overridden next time you call the method.

Returns String representation of the object’s significant members.

Public Members

uint16_t from_node
Logical address where the message was generated

uint16_t to_node
Logical address where the message is going

uint16_t id
Sequential message ID, incremented every time a new frame is constructed

10.2. Network Payload Structures 31

RF24Network library, Release 1.0.16

unsigned char type
Type of the packet. 0 - 127 are user-defined types, 128 - 255 are reserved for system.

User message types 1 through 64 will NOT be acknowledged by the network, while message types 65
through 127 will receive a network ACK. System message types 192 through 255 will NOT be acknowl-
edged by the network. Message types 128 through 192 will receive a network ACK.

See Reserved System Message Types

unsigned char reserved
Reserved for system use

During fragmentation, it carries the fragment_id, and on the last fragment it carries the header_type.

Public Static Attributes

static uint16_t next_id = 1
The message ID of the next message to be sent. This attribute is not sent with the header.

10.3 RF24Network_config.h

Defines

NETWORK_DEFAULT_ADDRESS 04444
A reserved valid address for use with RF24Mesh (when a mesh node requests an assigned address)

NETWORK_MULTICAST_ADDRESS 0100
A sentinel address value for multicasting purposes.

NETWORK_AUTO_ROUTING 070
A sentinel value for internally indicating that the frame should be automatically routed as necessary.

SLOW_ADDR_POLL_RESPONSE 10
Adds a delay to node prior to transmitting NETWORK_ADDR_RESPONSE messages.

By default this is undefined for speed. This defined number of milliseconds is only applied to the master node
when replying to a child trying to connect to the mesh network.

Note: It is advised to define this if any child node is running CircuitPython because the execution speed in pure
python is inherently slower than it is in C++.

RF24NetworkMulticast
When defined, this will allow the use of multicasting messages.

MAX_PAYLOAD_SIZE 144
Maximum size of fragmented network frames and fragmentation cache.

Note: This buffer can now be any size > 24. Previously this needed to be a multiple of 24 (changed in v1.0.15).

32 Chapter 10. Site Index

RF24Network library, Release 1.0.16

Note: If used with RF24Ethernet, this value is used to set the buffer sizes.

Note: For nodes driven by an ATTiny based chip, this is set to 72. However, defining DISABLE_FRAGMENTION
truncates the actual transmitted payload to 24 bytes (which is also the default behavior on ATTiny devices).

MAIN_BUFFER_SIZE (MAX_PAYLOAD_SIZE + FRAME_HEADER_SIZE)
The allocated size of the incoming frame buffer.

This is the user-cache, where incoming data is stored. Data is stored using Frames: Header (8 bytes) + Mes-
sage_Size (2 bytes) + Message_Data (? bytes)

Note: Over-The-Air (OTA) transmissions don’t include the message size in the transmitted packet.

ENABLE_DYNAMIC_PAYLOADS
Enable dynamic payloads - If using different types of nRF24L01 modules, some may be incompatible when
using this feature

10.4 Deprecated API

Member RF24Network::begin (uint8_t _channel, uint16_t _node_address)
Use RF24::setChannel() to configure the radio channel. Use RF24Network::begin(uint16_t _node_address)
to set the node address.

10.5 Related Pages

10.5.1 Contributing

These are the current requirements for getting your code included in RF24Network:

• Try your best to follow the rest of the code, if you’re unsure then the NASA C style can help as it’s closest to the
current style: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19950022400.pdf

• Definetly follow PEP-8 if it’s Python code.

• Follow the Arduino IDE formatting style for Arduino examples

• Add doxygen-compatible documentation to any new functions you add, or update existing documentation if you
change behaviour

• CMake modules and CMakeLists.txt files should also have a uniform syntax.

– Indentation is a mandatory 4 spaces (not a \t character).

– Closing parenthesis for multi-line commands should have the same indentation as the line that opened the
parenthesis.

10.4. Deprecated API 33

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19950022400.pdf
https://www.python.org/dev/peps/pep-0008/
https://www.arduino.cc/en/Reference/StyleGuide
https://www.doxygen.nl/manual/docblocks.html

RF24Network library, Release 1.0.16

– For other useful CMake syntax convention, please see CMake docs for developers and this useful best
CMake practices article. The qiBuild project has some well-reasoned “Dos & Don’ts” guideline, but beware
that the nRF24 organization is not related to the qiBuild project in any way.

10.5.2 Addressing Format: Understanding Addressing and Topology

An overview of addressing in RF24Network

Overview

The nrf24 radio modules typically use a 40-bit address format, requiring 5-bytes of storage space per address, and
allowing a wide array of addresses to be utilized. In addition, the radios are limited to direct communication with 6
other nodes while using the Enhanced-Shock-Burst (ESB) functionality of the radios.

RF24Network uses a simple method of data compression to store the addresses using only 2 bytes, in a format designed
to represent the network topology in an intuitive way. See the Topology and Overview page for more info regarding
topology.

Decimal, Octal and Binary formats

Say we want to designate a logical address to a node, using a tree topology as defined by the manufacturer. In the
simplest format, we could assign the first node the address of 1, the second 2, and so on. Since a single node can only
connect to 6 other nodes (1 parent and 5 children) subnets need to be created if using more than 6 nodes. In this case,
the

• children of node 1 could simply be designated as 11, 21, 31, 41, and 51

• children of node 2 could be designated as 12, 22, 32, 42, and 52

The above example is exactly how RF24Network manages the addresses, but they are represented in Octal format.

Decimal, Octal and Binary

Decimal Octal Binary
1 01 00000001
11 013 00001011
9 011 00001001
73 0111 01001001
111 0157 01101111

Since the numbers 0-7 can be represented in exactly three bits, each digit is represented by exactly 3 bits when viewed
in octal format. This allows a very simple method of managing addresses via masking and bit shifting.

34 Chapter 10. Site Index

https://cmake.org/cmake/help/v3.20/manual/cmake-developer.7.html
https://gist.github.com/mbinna/c61dbb39bca0e4fb7d1f73b0d66a4fd1
https://gist.github.com/mbinna/c61dbb39bca0e4fb7d1f73b0d66a4fd1
http://doc.aldebaran.com/qibuild/hacking/contrib/cmake/coding_guide.html
md_docs_tuning.html

RF24Network library, Release 1.0.16

Displaying Addresses

When using Arduino devices, octal addresses can be printed in the following manner:

uint16_t address = 0111;
Serial.println(address, OCT);

Printf can also be used, if enabled, or if using linux/RPi

uint16_t address = 0111;
printf("0%o\n", address);

• This cplusplus.com tutorial for more information number bases.

• The Topology and Overview page for more information regarding network topology.

10.5.3 Advanced Configuration

RF24Network offers many features, some of which can be configured by editing the RF24Network_config.h file

Configuration
Option

Description

#define
RF24NetworkMulticast

This option allows nodes to send and receive multicast payloads. Nodes with multicast en-
abled can also be configured to relay multicast payloads on to further multicast levels. See
RF24Network::multicastRelay

#define
DISABLE_FRAGMENTATION

Fragmentation is enabled by default, and uses an additional 144 bytes of memory.

#define
MAX_PAYLOAD_SIZE
144

The maximum size of payloads defaults to 144 bytes. If used with RF24toTUN and two Rasp-
berry Pi, set this to 1500

#define
DISABLE_USER_PAYLOADS

This option will disable user-caching of payloads entirely. Use with RF24Ethernet to reduce
memory usage. (TCP/IP is an external data type, and not cached)

#define
ENABLE_SLEEP_MODE

Uncomment this option to enable sleep mode for AVR devices. (ATTiny,Uno, etc)

#define
ENABLE_NETWORK_STATS

Enable counting of all successful or failed transmissions, routed or sent directly

10.5. Related Pages 35

http://www.cplusplus.com/doc/hex/
md_docs_tuning.html

RF24Network library, Release 1.0.16

10.5.4 Performance and Data Loss: Tuning the Network

Tips and examples for tuning the network and general operation.

Observe:

xml/topologyImage.jpg

Understanding Radio Communication and Topology

When a transmission takes place from one radio module to another, the receiving radio will communicate back to
the sender with an acknowledgement (ACK) packet, to indicate success. If the sender does not receive an ACK, the
radio automatically engages in a series of timed retries, at set intervals. The radios use techniques like addressing and
numbering of payloads to manage this, but it is all done automatically by the nrf chip, out of sight from the user.

When working over a radio network, some of these automated techniques can actually hinder data transmission to a
degree. Retrying failed payloads over and over on a radio network can hinder communication for nearby nodes, or
reduce throughput and errors on routing nodes.

Radios in this network are linked by addresses assigned to pipes. Each radio can listen to 6 addresses on 6 pipes,
therefore each radio has a parent pipe and 4-5 child pipes, which are used to form a tree structure. Nodes communicate
directly with their parent and children nodes. Any other traffic to or from a node must be routed through the network.

Topology of RF24Network

Anybody who is familiar at all with IP networking should be able to easily understand RF24Network topology. The
master node can be seen as the gateway, with up to 4 directly connected nodes. Each of those nodes creates a subnet
below it, with up to 4 additional child nodes. The numbering scheme can also be related to IP addresses, for purposes
of understanding the topology via subnetting. Nodes can have 5 children if multicast is disabled.

Expressing RF24Network addresses in IP format

As an example, we could designate the master node in theory, as Address 10.10.10.10

• The children nodes of the master would be 10.10.10.1, 10.10.10.2, 10.10.10.3, 10.10.10.4 and 10.10.
10.5

• The children nodes of 10.10.10.1 would be 10.10.1.1, 10.10.2.1, 10.10.3.1, 10.10.4.1 and 10.10.
5.1

In RF24Network, the master is just 00

• Children of master are 01, 02, 03, 04, 05

• Children of 01 are 011, 021, 031, 041, 051

36 Chapter 10. Site Index

RF24Network library, Release 1.0.16

Multicast

Multicast is enabled by default, which limits the master node to 5 child pipes and other nodes to 4. Nodes are arranged
in multicast ‘levels’ with the master node being level 0, nodes 01-05 are level 1, nodes n1-n5 are level 2, and so on.
The multicast level of each node can be configured as desired by the user, or multicast can be disabled by editing
RF24Network_config.h. For example, if all nodes are in range of the master node, all nodes can be configured to use
multicast level 1, allowing the master node to contact all of them by sending a single payload. Multicasting is also used
by the RF24Mesh layer for dynamic addressing requests.

Routing

Routing of traffic is handled invisibly to the user, by the network layer. If the network addresses are assigned in accor-
dance with the physical layout of the network, nodes will route traffic automatically as required. Users simply constuct
a header containing the appropriate destination address, and the network will forward it through to the correct node.
Individual nodes only route individual fragments, so if using fragmentation, routing nodes do not need it enabled,
unless sending or receiving fragmented payloads themselves.

If routing data between parent and child nodes (marked by direct links on the topology image above) the network uses
built-in acknowledgement and retry functions of the chip to prevent data loss. When payloads are sent to other nodes,
they need to be routed. Routing is managed using a combination of built in ACK requests, and software driven network
ACKs. This allows all routing nodes to forward data very quickly, with only the final routing node confirming delivery
and sending back an acknowledgement.

Example: Node 00 sends to node 01. The nodes will use the built in auto-retry and auto-ack functions.

Example: Node 00 sends to node 011. Node 00 will send to node 01 as before. Node 01 will forward the message to
011. If delivery was successful, node 01 will also forward a message back to node 00, indicating success.

Old Functionality: Node 00 sends to node 011 using auto-ack. Node 00 first sends to 01, 01 acknowledges. Node 01
forwards the payload to 011 using auto-ack. If the payload fails between 01 and 011, node 00 has no way of knowing.

Note: When retrying failed payloads that have been routed, there is a chance of duplicate payloads if the network-ack
is not successful. In this case, it is left up to the user to manage retries and filtering of duplicate payloads.

Acknowledgements can and should be managed by the application or user. If requesting a response from another
node, an acknowledgement is not required, so a user defined type of 0-64 should be used, to prevent the network from
responding with an acknowledgement. If not requesting a response, and wanting to know if the payload was successful
or not, users can utilize header types 65-127.

Tuning Overview

The RF24 radio modules are generally only capable of either sending or receiving data at any given time, but have
built-in auto-retry mechanisms to prevent the loss of data. These values are adjusted automatically by the library on
startup, but can be further adjusted to reduce data loss, and thus increase throughput of the network. This page is
intended to provide a general overview of its operation within the context of the network library, and provide guidance
for adjusting these values.

10.5. Related Pages 37

RF24Network library, Release 1.0.16

Auto-Retry Timing

The core radio library provides the functionality of adjusting the internal auto-retry interval of the radio modules. In the
network configuration, the radios can be set to automatically retry failed transmissions at intervals ranging anywhere
from 500us (0.5ms) up to 4000us (4ms). When operating any number of radios larger than two, it is important to
stagger the assigned intervals, to prevent the radios from interfering with each other at the radio frequency (RF) layer.

The library should provide fairly good working values, as it simply staggers the assigned values within groups of radios
in direct communication. This value can be set manually by calling radio.setRetries(X, 15); and adjusting the
value of X from 1 to 15 (steps of 250us).

Auto-Retry Count and Extended Timeouts

The core radio library also provides the ability to adjust the internal auto-retry count of the radio modules. The default
setting is 15 automatic retries per payload, and can be extended by configuring the network.txTimeout variable. This
default retry count should generally be left at 15, as per the example in the above section. An interval/retry setting of
(15,15) will provide 15 retrys at intervals of 4ms, taking up to 60ms per payload. The library now provides staggered
timeout periods by default, but they can also be adjusted on a per-node basis.

The txTimeout variable is used to extend the retry count to a defined duration in milliseconds. See the net-
work.txTimeout variable. Timeout periods of extended duration (500+) will generally not help when payloads are
failing due to data collisions, it will only extend the duration of the errors. Extended duration timeouts should gener-
ally only be configured on leaf nodes that do not receive data.

Scenarios

Example 1

Network with master node and three leaf nodes that send data to the master node. None of the leaf nodes need to receive
data.

1. Master node uses default configuration

2. Leaf nodes can be configured with extended timeout periods to ensure reception by the master.

3. The following configuration will provide a reduction in errors, as the timeouts have been extended and are stag-
gered between devices.

Leaf 01: network.txTimeout = 500;
Leaf 02: network.txTimeout = 573;
Leaf 03: network.txTimeout = 653;

Example 2

Network with master node and three leaf nodes that send data to the master node. The second leaf node needs to receive
configuration data from the master at set intervals of 1 second, and send data back to the master node. The other leaf
nodes will send basic sensor information every few seconds, and a few dropped payloads will not affect the operation
greatly.

1. Master node configured with extended timeouts of 0.5 seconds, and increased retry delay:

38 Chapter 10. Site Index

RF24Network library, Release 1.0.16

radio.setRetries(11, 15);
network.txTimeout = 500;

2. Second leaf node configured with a similar timeout period and retry delay:

radio.setRetries(8, 15);
network.txTimeout = 553;

3. First and third leaf nodes configured with default timeout periods or slightly increased timout periods.

10.5.5 Comparison to ZigBee

This network layer is influenced by the design of ZigBee, but does not implement it directly.

Which is better?

ZigBee is a much more robust, feature-rich set of protocols, with many different vendors providing compatible chips.

RF24Network is cheap. While ZigBee radios are well over $20, nRF24L01 modules can be found for under $2.

Similiarities & Differences

Here are some comparisons between RF24Network and ZigBee.

• Both networks support Star and Tree topologies. Only Zigbee supports a true mesh.

• In ZigBee networks, only leaf nodes can sleep

• ZigBee nodes are configured using AT commands, or a separate Windows application. RF24 nodes are config-
ured by recompiliing the firmware or writing to EEPROM.

• A paper was written comparing the performance of Zigbee vs nRF24l01+, see TMRh20s Blog for a detailed
overview.

Node Naming

• Leaf node: A node at the outer edge of the network with no children. ZigBee calls it an End Device node.

• Relay node: A node which has both parents and children, and relays messages from one to the other. ZigBee
calls it a Router.

• Base node. The top of the tree node with no parents, only children. Typically this node will bridge to another
kind of network like Ethernet. ZigBee calls it a Co-ordinator node.

10.5. Related Pages 39

https://tmrh20.blogspot.com/2019/05/comparative-performance-analysis.html

RF24Network library, Release 1.0.16

10.6 Reserved System Message Types

The network will determine whether to automatically acknowledge payloads based on their general type.

• User types (1 - 127) 1 - 64 will NOT be acknowledged

• System types (128 - 255) 192 - 255 will NOT be acknowledged

System types can also contain message data.

NETWORK_ADDR_RESPONSE 128
A NETWORK_ADDR_RESPONSE type is utilized to manually route custom messages containing a single
RF24Network address.

Used by RF24Mesh

If a node receives a message of this type that is directly addressed to it, it will read the included message, and
forward the payload on to the proper recipient.

This allows nodes to forward multicast messages to the master node, receive a response, and forward it back to
the requester.

NETWORK_PING 130
Messages of type NETWORK_PING will be dropped automatically by the recipient. A NETWORK_ACK or au-
tomatic radio-ack will indicate to the sender whether the payload was successful. The time it takes to successfully
send a NETWORK_PING is the round-trip-time.

EXTERNAL_DATA_TYPE 131
External data types are used to define messages that will be passed to an external data system. This allows
RF24Network to route and pass any type of data, such as TCP/IP frames, while still being able to utilize standard
RF24Network messages etc.

• Linux

Linux devices (defined with RF24_LINUX macro) will buffer all data types in the user cache.

• Arduino/AVR/Etc

Data transmitted with the type set to EXTERNAL_DATA_TYPE will not be loaded into the user cache.

External systems can extract external data using the following process, while internal data types are cached in
the user buffer, and accessed using network.read() :

uint8_t return_type = network.update();
if(return_type == EXTERNAL_DATA_TYPE){

uint16_t size = network.frag_ptr->message_size;
memcpy(&myDataBuffer, network.frag_ptr->message_buffer, network.frag_ptr->

→˓message_size);
}

NETWORK_FIRST_FRAGMENT 148
Messages of this type designate the first of two or more message fragments, and will be re-assembled automati-
cally.

NETWORK_MORE_FRAGMENTS 149
Messages of this type indicate a fragmented payload with two or more message fragments.

40 Chapter 10. Site Index

RF24Network library, Release 1.0.16

NETWORK_LAST_FRAGMENT 150
Messages of this type indicate the last fragment in a sequence of message fragments. Messages of this type do
not receive a NETWORK_ACK

NETWORK_ACK 193
Messages of this type signal the sender that a network-wide transmission has been completed.

• Not fool-proof

RF24Network does not directly have a built-in transport layer protocol, so message delivery is not 100%
guaranteed. Messages can be lost via corrupted dynamic payloads, or a NETWORK_ACK can fail
(despite successful transmission of the message).

• Traffic analysis

NETWORK_ACK messages can be utilized as a traffic/flow control mechanism. Transmitting nodes that
emit NETWORK_ACK qualifying messages will be forced to wait, before sending additional data,
until the payload is transmitted across the network and acknowledged.

• Different from Radio ACK Packets

In the event that the transmitting device will be sending directly to a parent or child node, a NET-
WORK_ACK is not required. This is because the radio’s auto-ack feature is utilized for connections
between directly related network nodes. For example: nodes 01 and 011 use the radio’s auto-ack fea-
ture for transmissions between them, but nodes 01 and 02 do not use the radio’s auto-ack feature for
transmissions between them as messages will be routed through other nodes.

Multicasted messages do use the radio’s auto-ack feature because of the hardware limitations of nRF24L01
transceivers. This applies to all multicasted messages (directly related nodes or otherwise).

Remark Remember, user messages types with a decimal value of 64 or less will not be acknowledged
across the network via NETWORK_ACK messages.

Note: NETWORK_ACK messages are only sent by the last node in the route to a target node. ie: When node
00 sends an instigating message to node 011, node 01 will send the NETWORK_ACK message to 00 upon
sucessful delivery of instigating message to node 011.

NETWORK_POLL 194
Used by RF24Mesh

Messages of this type are used with multi-casting , to find active/available nodes. Any node receiving a NET-
WORK_POLL sent to a multicast address will respond directly to the sender with a blank message, indicating
the address of the available node via the header.

NETWORK_REQ_ADDRESS 195
Used by RF24Mesh

Messages of this type are used to request information from the master node, generally via a unicast (direct) write.
Any (non-master) node receiving a message of this type will manually forward it to the master node using a
normal network write.

10.6. Reserved System Message Types 41

RF24Network library, Release 1.0.16

10.7 Examples

10.7.1 Arduino Examples

helloworld_tx.ino

1 /**
2 * Copyright (C) 2012 James Coliz, Jr. <maniacbug@ymail.com>
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * version 2 as published by the Free Software Foundation.
7 *
8 * Update 2014 - TMRh20
9 */

10

11 /**
12 * Simplest possible example of using RF24Network
13 *
14 * TRANSMITTER NODE
15 * Every 2 seconds, send a payload to the receiver node.
16 */
17

18 #include <SPI.h>
19 #include <RF24.h>
20 #include <RF24Network.h>
21

22 RF24 radio(7, 8); // nRF24L01(+) radio attached using Getting Started␣
→˓board

23

24 RF24Network network(radio); // Network uses that radio
25

26 const uint16_t this_node = 01; // Address of our node in Octal format
27 const uint16_t other_node = 00; // Address of the other node in Octal format
28

29 const unsigned long interval = 2000; // How often (in ms) to send 'hello world' to the␣
→˓other unit

30

31 unsigned long last_sent; // When did we last send?
32 unsigned long packets_sent; // How many have we sent already
33

34

35 struct payload_t { // Structure of our payload
36 unsigned long ms;
37 unsigned long counter;
38 };
39

40 void setup(void) {
41 Serial.begin(115200);
42 while (!Serial) {
43 // some boards need this because of native USB capability
44 }

(continues on next page)

42 Chapter 10. Site Index

RF24Network library, Release 1.0.16

(continued from previous page)

45 Serial.println(F("RF24Network/examples/helloworld_tx/"));
46

47 if (!radio.begin()) {
48 Serial.println(F("Radio hardware not responding!"));
49 while (1) {
50 // hold in infinite loop
51 }
52 }
53 radio.setChannel(90);
54 network.begin(/*node address*/ this_node);
55 }
56

57 void loop() {
58

59 network.update(); // Check the network regularly
60

61 unsigned long now = millis();
62

63 // If it's time to send a message, send it!
64 if (now - last_sent >= interval) {
65 last_sent = now;
66

67 Serial.print(F("Sending... "));
68 payload_t payload = { millis(), packets_sent++ };
69 RF24NetworkHeader header(/*to node*/ other_node);
70 bool ok = network.write(header, &payload, sizeof(payload));
71 Serial.println(ok ? F("ok.") : F("failed."));
72 }
73 }

helloworld_rx.ino

1 /**
2 * Copyright (C) 2012 James Coliz, Jr. <maniacbug@ymail.com>
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * version 2 as published by the Free Software Foundation.
7 *
8 * Update 2014 - TMRh20
9 */

10

11 /**
12 * Simplest possible example of using RF24Network,
13 *
14 * RECEIVER NODE
15 * Listens for messages from the transmitter and prints them out.
16 */
17

18 #include <SPI.h>
(continues on next page)

10.7. Examples 43

RF24Network library, Release 1.0.16

(continued from previous page)

19 #include <RF24.h>
20 #include <RF24Network.h>
21

22

23 RF24 radio(7, 8); // nRF24L01(+) radio attached using Getting Started board
24

25 RF24Network network(radio); // Network uses that radio
26 const uint16_t this_node = 00; // Address of our node in Octal format (04, 031, etc)
27 const uint16_t other_node = 01; // Address of the other node in Octal format
28

29 struct payload_t { // Structure of our payload
30 unsigned long ms;
31 unsigned long counter;
32 };
33

34

35 void setup(void) {
36 Serial.begin(115200);
37 while (!Serial) {
38 // some boards need this because of native USB capability
39 }
40 Serial.println(F("RF24Network/examples/helloworld_rx/"));
41

42 if (!radio.begin()) {
43 Serial.println(F("Radio hardware not responding!"));
44 while (1) {
45 // hold in infinite loop
46 }
47 }
48 radio.setChannel(90);
49 network.begin(/*node address*/ this_node);
50 }
51

52 void loop(void) {
53

54 network.update(); // Check the network regularly
55

56 while (network.available()) { // Is there anything ready for us?
57

58 RF24NetworkHeader header; // If so, grab it and print it out
59 payload_t payload;
60 network.read(header, &payload, sizeof(payload));
61 Serial.print(F("Received packet: counter="));
62 Serial.print(payload.counter);
63 Serial.print(F(", origin timestamp="));
64 Serial.println(payload.ms);
65 }
66 }

44 Chapter 10. Site Index

RF24Network library, Release 1.0.16

helloworld_tx_advanced.ino

1 /**
2 * Copyright (C) 2020 TMRh20(tmrh20@gmail.com)
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * version 2 as published by the Free Software Foundation.
7 */
8

9 /**
10 * More advanced example of using RF24Network:
11 * Fragmentation and Reassembly:
12 * - nrf24l01+ radios can tx/rx 32 bytes of data per transmission
13 * - RF24Network will fragment and re-assemble payloads of any size
14 * Demonstrates use of differing sized payloads using peek() function
15 *
16 * TRANSMITTER NODE
17 * Every X milliseconds, send a payload to the receiver node.
18 */
19

20 #include "printf.h"
21 #include <RF24.h>
22 #include <RF24Network.h>
23

24 RF24 radio(7, 8); // nRF24L01(+) radio attached using Getting Started␣
→˓board

25

26 RF24Network network(radio); // Network uses that radio
27

28 const uint16_t this_node = 01; // Address of our node in Octal format
29 const uint16_t other_node = 00; // Address of the other node in Octal format
30

31 const unsigned long interval = 500; //ms // How often to send 'hello world to the other␣
→˓unit

32

33 unsigned long last_sent; // When did we last send?
34

35 /**** Create a large array for data to be sent ****
36 * MAX_PAYLOAD_SIZE is defined in RF24Network_config.h
37 * Payload sizes of ~1-2 KBytes or more are practical when radio conditions are good
38 */
39 uint8_t dataBuffer[MAX_PAYLOAD_SIZE];
40

41 void setup(void) {
42 Serial.begin(115200);
43 while (!Serial) {
44 // some boards need this because of native USB capability
45 }
46 Serial.println(F("RF24Network/examples/helloworld_tx_advanced/"));
47 printf_begin(); // needed for RF24* libs' internal printf() calls
48

49 if (!radio.begin()) {
(continues on next page)

10.7. Examples 45

RF24Network library, Release 1.0.16

(continued from previous page)

50 Serial.println(F("Radio hardware not responding!"));
51 while (1) {
52 // hold in infinite loop
53 }
54 }
55 radio.setChannel(90);
56 network.begin(/*node address*/ this_node);
57 radio.printDetails();
58

59 // Load our data buffer with numbered data
60 for (uint16_t i = 0; i < MAX_PAYLOAD_SIZE; i++) {
61 dataBuffer[i] = i % 256; //Ensure the max value is 255
62 }
63 }
64

65 uint16_t sizeofSend = 0; //Variable to indicate how much data to send
66 bool stopSending = 0; //Used to stop/start sending of data
67

68 void loop() {
69

70 //User input anything via Serial to stop/start data transmission
71 if (Serial.available()) {
72 Serial.read();
73 stopSending = !stopSending;
74 }
75

76 network.update(); // Check the network regularly
77

78 unsigned long now = millis(); // If it's time to send a message, send it!
79 if (now - last_sent >= interval && !stopSending) {
80 last_sent = now;
81 Serial.print(F("Sending size "));
82 Serial.print(sizeofSend);
83

84 // Fragmentation/reassembly is transparent. Just send payloads as usual.
85 RF24NetworkHeader header(/*to node*/ other_node);
86 bool ok = network.write(header, &dataBuffer, sizeofSend++);
87

88 // If the size of data to be sent is larger than max payload size, reset at 0
89 if (sizeofSend > MAX_PAYLOAD_SIZE) {
90 sizeofSend = 0;
91 }
92

93 Serial.println(ok ? F(" ok.") : F(" failed."));
94 }
95 }

46 Chapter 10. Site Index

RF24Network library, Release 1.0.16

helloworld_rx_advanced.ino

1 /**
2 * Copyright (C) 2020 TMRh20(tmrh20@gmail.com)
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * version 2 as published by the Free Software Foundation.
7 */
8

9 /**
10 * More advanced example of using RF24Network:
11 * Fragmentation and Reassembly:
12 * - nrf24l01+ radios can tx/rx 32 bytes of data per transmission
13 * - RF24Network will fragment and re-assemble payloads of any size
14 * Demonstrates use of differing sized payloads using peek() function
15 *
16 * RECEIVER NODE
17 * Every X milliseconds, send a payload to the receiver node.
18 */
19

20 #include "printf.h"
21 #include <RF24.h>
22 #include <RF24Network.h>
23

24 RF24 radio(7, 8); // nRF24L01(+) radio attached using Getting Started␣
→˓board

25

26 RF24Network network(radio); // Network uses that radio
27 const uint16_t this_node = 00; // Address of our node in Octal format (04,031, etc)
28 const uint16_t other_node = 01; // Address of the other node in Octal format
29

30 /**** Create a large array for data to be received ****
31 * MAX_PAYLOAD_SIZE is defined in RF24Network_config.h
32 * Payload sizes of ~1-2 KBytes or more are practical when radio conditions are good
33 */
34 uint8_t dataBuffer[MAX_PAYLOAD_SIZE]; //MAX_PAYLOAD_SIZE is defined in RF24Network_

→˓config.h
35

36

37 void setup(void) {
38

39 Serial.begin(115200);
40 while (!Serial) {
41 // some boards need this because of native USB capability
42 }
43 Serial.println(F("RF24Network/examples/helloworld_rx_advanced/"));
44

45 if (!radio.begin()) {
46 Serial.println(F("Radio hardware not responding!"));
47 while (1) {
48 // hold in infinite loop
49 }

(continues on next page)

10.7. Examples 47

RF24Network library, Release 1.0.16

(continued from previous page)

50 }
51 radio.setChannel(90);
52 network.begin(/*node address*/ this_node);
53

54 printf_begin(); // needed for RF24* libs' internal printf() calls
55 radio.printDetails(); // requires printf support
56 }
57

58 // Variable for calculating how long between RX
59 uint32_t timeBetweenPackets = 0;
60

61 void loop(void) {
62

63 network.update(); // Check the network regularly
64

65 while (network.available()) { // Is there anything ready for us?
66

67 RF24NetworkHeader header; // If so, grab it and print it out
68 uint16_t payloadSize = network.peek(header); // Use peek() to get the size of the␣

→˓payload
69 network.read(header, &dataBuffer, payloadSize); // Get the data
70 Serial.print("Received packet, size "); // Print info about received data
71 Serial.print(payloadSize);
72 Serial.print("(");
73 Serial.print(millis() - timeBetweenPackets);
74 Serial.println("ms since last)");
75 timeBetweenPackets = millis();
76

77 // Uncomment below to print the entire payload
78 /*
79 for(uint32_t i = 0; i < payloadSize; i++) {
80 Serial.print(dataBuffer[i]);
81 Serial.print(F(": "));
82 if(i % 50 == 49) {
83 //Add a line break every 50 characters
84 Serial.println();
85 }
86 }
87 Serial.println();
88 */
89 }
90 }

48 Chapter 10. Site Index

RF24Network library, Release 1.0.16

Network_Ping.ino

1 /**
2 * Copyright (C) 2011 James Coliz, Jr. <maniacbug@ymail.com>
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * version 2 as published by the Free Software Foundation.
7 */
8

9 /**
10 * Example: Network topology, and pinging across a tree/mesh network
11 *
12 * Using this sketch, each node will send a ping to every other node in the network␣

→˓every few seconds.
13 * The RF24Network library will route the message across the mesh to the correct node.
14 *
15 * This sketch is greatly complicated by the fact that at startup time, each
16 * node (including the base) has no clue what nodes are alive. So,
17 * each node builds an array of nodes it has heard about. The base
18 * periodically sends out its whole known list of nodes to everyone.
19 *
20 * To see the underlying frames being relayed, compile RF24Network with
21 * #define SERIAL_DEBUG.
22 *
23 * Update: The logical node address of each node is set below, and are grouped in twos␣

→˓for demonstration.
24 * Number 0 is the master node. Numbers 1-2 represent the 2nd layer in the tree (02,05).
25 * Number 3 (012) is the first child of number 1 (02). Number 4 (015) is the first child␣

→˓of number 2.
26 * Below that are children 5 (022) and 6 (025), and so on as shown below
27 * The tree below represents the possible network topology with the addresses defined␣

→˓lower down
28 *
29 * Addresses/Topology Node Numbers (To simplify address␣

→˓assignment in this demonstration)
30 * 00 - Master Node (0)
31 * 02 05 - 1st Level children (1,2)
32 * 32 22 12 15 25 35 45 - 2nd Level children (7,5,3-4,6,8)
33 *
34 * eg:
35 * For node 4 (Address 015) to contact node 1 (address 02), it will send through node 2␣

→˓(address 05) which relays the payload
36 * through the master (00), which sends it through to node 1 (02). This seems␣

→˓complicated, however, node 4 (015) can be a very
37 * long way away from node 1 (02), with node 2 (05) bridging the gap between it and the␣

→˓master node.
38 *
39 * To use the sketch, upload it to two or more units and set the NODE_ADDRESS below. If␣

→˓configuring only a few
40 * units, set the addresses to 0,1,3,5... to configure all nodes as children to each␣

→˓other. If using many nodes,
41 * it is easiest just to increment the NODE_ADDRESS by 1 as the sketch is uploaded to␣

→˓each device. (continues on next page)

10.7. Examples 49

RF24Network library, Release 1.0.16

(continued from previous page)

42 */
43

44 #include <avr/pgmspace.h>
45 #include "printf.h"
46 #include <SPI.h>
47 #include <RF24.h>
48 #include <RF24Network.h>
49

50 /***
51 ************* Set the Node Address *************************************
52 /***/
53

54 // These are the Octal addresses that will be assigned
55 const uint16_t node_address_set[10] = { 00, 02, 05, 012, 015, 022, 025, 032, 035, 045 };
56

57 // 0 = Master
58 // 1-2 (02, 05) = Children of Master(00)
59 // 3,5 (012, 022) = Children of (02)
60 // 4,6 (015, 025) = Children of (05)
61 // 7 (032) = Child of (02)
62 // 8,9 (035, 045) = Children of (05)
63

64 uint8_t NODE_ADDRESS = 0; // Use numbers 0 through to select an address from the array
65

66 /***/
67 /***/
68

69

70 RF24 radio(7, 8); // CE & CS pins to use (Using 7,8 on Uno,
→˓Nano)

71 RF24Network network(radio);
72

73 uint16_t this_node; // Our node address
74

75 const unsigned long interval = 1000; // ms // Delay manager to send pings␣
→˓regularly.

76 unsigned long last_time_sent;
77

78

79 const short max_active_nodes = 10; // Array of nodes we are aware of
80 uint16_t active_nodes[max_active_nodes];
81 short num_active_nodes = 0;
82 short next_ping_node_index = 0;
83

84

85 bool send_T(uint16_t to); // Prototypes for functions to send &␣
→˓handle messages

86 bool send_N(uint16_t to);
87 void handle_T(RF24NetworkHeader& header);
88 void handle_N(RF24NetworkHeader& header);
89 void add_node(uint16_t node);
90

(continues on next page)

50 Chapter 10. Site Index

RF24Network library, Release 1.0.16

(continued from previous page)

91

92 void setup() {
93

94 Serial.begin(115200);
95 printf_begin(); // needed for RF24* libs' internal printf() calls
96 while (!Serial) {
97 // some boards need this because of native USB capability
98 }
99 Serial.println(F("RF24Network/examples/meshping/"));

100

101 this_node = node_address_set[NODE_ADDRESS]; // Which node are we?
102

103 if (!radio.begin()) {
104 Serial.println(F("Radio hardware not responding!"));
105 while (1) {
106 // hold in infinite loop
107 }
108 }
109 radio.setPALevel(RF24_PA_HIGH);
110 radio.setChannel(100);
111 network.begin(/*node address*/ this_node);
112 }
113

114 void loop() {
115

116 network.update(); // Pump the network regularly
117

118 while (network.available()) { // Is there anything ready for us?
119

120 RF24NetworkHeader header; // If so, take a look at it
121 network.peek(header);
122

123

124 switch (header.type) { // Dispatch the message to the␣
→˓correct handler.

125 case 'T':
126 handle_T(header);
127 break;
128 case 'N':
129 handle_N(header);
130 break;
131 default:
132 Serial.print(F("*** WARNING *** Unknown message type "));
133 Serial.println(header.type);
134 network.read(header, 0, 0);
135 break;
136 };
137 }
138

139

140 unsigned long now = millis(); // Send a ping to the next node␣
→˓every 'interval' ms

(continues on next page)

10.7. Examples 51

RF24Network library, Release 1.0.16

(continued from previous page)

141 if (now - last_time_sent >= interval) {
142 last_time_sent = now;
143

144

145 uint16_t to = 00; // Who should we send to? By␣
→˓default, send to base

146

147

148 if (num_active_nodes) { // Or if we have active nodes,
149 to = active_nodes[next_ping_node_index++]; // Send to the next active node
150 if (next_ping_node_index > num_active_nodes) { // Have we rolled over?
151 next_ping_node_index = 0; // Next time start at the beginning
152 to = 00; // This time, send to node 00.
153 }
154 }
155

156 bool ok;
157

158 if (this_node > 00 || to == 00) { // Normal nodes send a 'T' ping
159 ok = send_T(to);
160 } else { // Base node sends the␣

→˓current active nodes out
161 ok = send_N(to);
162 }
163

164 if (ok) { // Notify us of the result
165 Serial.print(millis());
166 Serial.println(F(": APP Send ok"));
167 } else {
168 Serial.print(millis());
169 Serial.println(F(": APP Send failed"));
170 last_time_sent -= 100; // Try sending at a different␣

→˓time next time
171 }
172 }
173

174

175 // delay(50); // Delay to allow completion of any serial␣
→˓printing

176 // if(!network.available()){
177 // network.sleepNode(2,0); // Sleep this node for 2 seconds or a payload␣

→˓is received (interrupt 0 triggered), whichever comes first
178 // }
179 }
180

181 /**
182 * Send a 'T' message, the current time
183 */
184 bool send_T(uint16_t to) {
185 RF24NetworkHeader header(/*to node*/ to, /*type*/ 'T' /*Time*/);
186

187 // The 'T' message that we send is just a ulong, containing the time
(continues on next page)

52 Chapter 10. Site Index

RF24Network library, Release 1.0.16

(continued from previous page)

188 unsigned long message = millis();
189 Serial.println(F("---------------------------------"));
190 Serial.print(millis());
191 Serial.print(F(": APP Sending "));
192 Serial.print(message);
193 Serial.print(F(" to "));
194 Serial.print(to);
195 Serial.println(F("..."));
196 return network.write(header, &message, sizeof(unsigned long));
197 }
198

199 /**
200 * Send an 'N' message, the active node list
201 */
202 bool send_N(uint16_t to) {
203 RF24NetworkHeader header(/*to node*/ to, /*type*/ 'N' /*Time*/);
204

205 Serial.println(F("---------------------------------"));
206 Serial.print(millis());
207 Serial.print(F(": APP Sending active nodes to "));
208 Serial.print(to);
209 Serial.println(F("..."));
210 return network.write(header, active_nodes, sizeof(active_nodes));
211 }
212

213 /**
214 * Handle a 'T' message
215 * Add the node to the list of active nodes
216 */
217 void handle_T(RF24NetworkHeader& header) {
218

219 unsigned long message; ␣
→˓ // The 'T' message is just a ulong, containing the time

220 network.read(header, &message, sizeof(unsigned long));
221 Serial.print(millis());
222 Serial.print(F(": APP Received "));
223 Serial.print(message);
224 Serial.print(F(" from "));
225 Serial.println(header.from_node);
226

227 if (header.from_node != this_node || header.from_node > 00) ␣
→˓ // If this message is from ourselves or the base, don't bother adding it to the␣
→˓active nodes.

228 add_node(header.from_node);
229 }
230

231 /**
232 * Handle an 'N' message, the active node list
233 */
234 void handle_N(RF24NetworkHeader& header) {
235 static uint16_t incoming_nodes[max_active_nodes];
236

(continues on next page)

10.7. Examples 53

RF24Network library, Release 1.0.16

(continued from previous page)

237 network.read(header, &incoming_nodes, sizeof(incoming_nodes));
238 Serial.print(millis());
239 Serial.print(F(": APP Received nodes from "));
240 Serial.println(header.from_node);
241

242 int i = 0;
243 while (i < max_active_nodes && incoming_nodes[i] > 00)
244 add_node(incoming_nodes[i++]);
245 }
246

247 /**
248 * Add a particular node to the current list of active nodes
249 */
250 void add_node(uint16_t node) {
251

252 short i = num_active_nodes; // Do we already know about this␣
→˓node?

253 while (i--) {
254 if (active_nodes[i] == node)
255 break;
256 }
257

258 if (i == -1 && num_active_nodes < max_active_nodes) { // If not, add it to the table
259 active_nodes[num_active_nodes++] = node;
260 Serial.print(millis());
261 Serial.print(F(": APP Added "));
262 Serial.print(node);
263 Serial.println(F(" to list of active nodes."));
264 }
265 }

Network_Ping_Sleep.ino

This example demonstrates how nodes on the network utilize sleep mode to conserve power. For example, the radio
itself will draw about 13.5mA in receive mode. In sleep mode, it will use as little as 22ua (.000022mA) of power when
not actively transmitting or receiving data. In addition, the Arduino is powered down as well, dropping network power
consumption dramatically compared to previous capabilities.

Note: Sleeping nodes generate traffic that will wake other nodes up. This may be mitigated with further modifications.
Sleep payloads are currently always routed to the master node, which will wake up intermediary nodes. Routing nodes
can be configured to go back to sleep immediately.

The displayed millis() count will give an indication of how much a node has been sleeping compared to the others,
as millis() will not increment while a node sleeps.

• Using this sketch, each node will send a ping to every other node in the network every few seconds.

• The RF24Network library will route the message across the mesh to the correct node.

1 /**
2 * Copyright (C) 2011 James Coliz, Jr. <maniacbug@ymail.com>

(continues on next page)

54 Chapter 10. Site Index

RF24Network library, Release 1.0.16

(continued from previous page)

3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * version 2 as published by the Free Software Foundation.
7 *
8 * 2014 - TMRh20: New sketch included with updated library
9 */

10

11 /**
12 * Example: Network topology, and pinging across a tree/mesh network with sleeping nodes
13 *
14 * Using this sketch, each node will send a ping to every other node in the network␣

→˓every few seconds.
15 * The RF24Network library will route the message across the mesh to the correct node.
16 *
17 * This sketch demonstrates the new functionality of nodes sleeping in STANDBY-I mode.␣

→˓In receive mode,
18 * the radio will draw about 13.5 mA. In STANDBY-I mode, the radio draws .000022mA, and␣

→˓is able to awake
19 * when payloads are received.
20 *
21 * How it Works:
22 * The enhanced sleep mode utilizes the ACK payload functionality, as radios that are in␣

→˓Primary Transmitter
23 * mode (PTX) are able to receive ACK payloads while in STANDBY-I mode.
24 * 1. The radio is configured to use Dynamic Payloads and ACK payloads with Auto-Ack␣

→˓enabled
25 * 2. The radio enters PTX mode and attaches an interrupt handler to the radio interrupt␣

→˓input pin (pin 2)
26 * 3. The radio uses the Watchdog Timer to awake at set 1 second intervals in this␣

→˓example
27 * 4. Every interval, it sends out a 'sleep' payload and goes back to sleep. Incoming␣

→˓payloads will then be treated as ACK payloads, while the radio remains in STANDBY-I␣
→˓mode.

28 * 5. If an interrupt is triggered, the radio wakes up
29 * 6. When a message is sent to the sleeping node, the interrupt triggers a wake up, the␣

→˓MCU
30 * grabs the payload, and switches back to receive mode in case more data is on its way.
31 *
32 * The node (Arduino) power use can be reduced further by disabling unnessessary systems␣

→˓via the Power Reduction Register(s) (PRR).
33 */
34

35 #include <avr/pgmspace.h>
36 #include <avr/sleep.h>
37 #include <avr/power.h>
38 #include "printf.h"
39 #include <SPI.h>
40 #include <RF24.h>
41 #include <RF24Network.h>
42

43

(continues on next page)

10.7. Examples 55

RF24Network library, Release 1.0.16

(continued from previous page)

44 /***
45 ************* Set the Node Address *************************************
46 **/
47

48 // These are the Octal addresses that will be assigned
49 const uint16_t node_address_set[10] = { 00, 02, 05, 012, 015, 022, 025, 032, 035, 045 };
50

51 // 0 = Master
52 // 1-2 (02, 05) = Children of Master(00)
53 // 3, 5 (012, 022) = Children of (02)
54 // 4, 6 (015, 025) = Children of (05)
55 // 7 (032) = Child of (02)
56 // 8, 9 (035, 045) = Children of (05)
57

58 uint8_t NODE_ADDRESS = 1; // Use numbers 0 through 9 to select an address from the array
59

60 /***/
61 /***/
62

63

64 RF24 radio(7, 8); // CE & CS pins to use (Using 7,8 on Uno,Nano)
65 RF24Network network(radio);
66

67 uint16_t this_node; // Our node address
68

69 const unsigned long interval = 1000; // Delay manager to send pings regularly (in␣
→˓ms). Because of sleepNode(), this is largely irrelevant.

70 unsigned long last_time_sent;
71

72 const short max_active_nodes = 10; // Array of nodes we are aware of
73 uint16_t active_nodes[max_active_nodes];
74 short num_active_nodes = 0;
75 short next_ping_node_index = 0;
76

77

78 bool send_T(uint16_t to); // Prototypes for functions to send & handle␣
→˓messages

79 bool send_N(uint16_t to);
80 void handle_T(RF24NetworkHeader& header);
81 void handle_N(RF24NetworkHeader& header);
82 void add_node(uint16_t node);
83

84

85 //This is for sleep mode. It is not really required, as users could just use the number␣
→˓0 through 10

86 typedef enum { wdt_16ms = 0, wdt_32ms, wdt_64ms, wdt_128ms, wdt_250ms, wdt_500ms, wdt_1s,
→˓ wdt_2s, wdt_4s, wdt_8s } wdt_prescalar_e;

87

88 unsigned long awakeTime = 500; // How long in ms the radio will␣
→˓stay awake after leaving sleep mode

89 unsigned long sleepTimer = 0; // Used to keep track of how␣
→˓long the system has been awake

(continues on next page)

56 Chapter 10. Site Index

RF24Network library, Release 1.0.16

(continued from previous page)

90

91 void setup() {
92

93 Serial.begin(115200);
94 printf_begin(); // needed for RF24* libs' internal printf() calls
95 while (!Serial) {
96 // some boards need this because of native USB capability
97 }
98 Serial.println(F("RF24Network/examples/meshping/"));
99

100 this_node = node_address_set[NODE_ADDRESS]; // Which node are we?
101

102 if (!radio.begin()) {
103 Serial.println(F("Radio hardware not responding!"));
104 while (1) {
105 // hold in infinite loop
106 }
107 }
108 radio.setPALevel(RF24_PA_HIGH);
109 radio.setChannel(100);
110 network.begin(/*node address*/ this_node);
111

112 /******************************** This is the configuration for sleep mode␣
→˓***********************/

113 network.setup_watchdog(wdt_1s); //The watchdog timer will wake␣
→˓the MCU and radio every second to send a sleep payload, then go back to sleep

114 }
115

116 void loop() {
117

118 network.update(); // Pump the network regularly
119

120 while (network.available()) { // Is there anything ready for us?
121

122 RF24NetworkHeader header; // If so, take a look at it
123 network.peek(header);
124

125

126 switch (header.type) { // Dispatch the message to the correct handler.
127 case 'T':
128 handle_T(header);
129 break;
130 case 'N':
131 handle_N(header);
132 break;
133

134 /************* SLEEP MODE *********/
135 // Note: A 'sleep' header has been defined, and should only need to be ignored if a␣

→˓node is routing traffic to itself
136 // The header is defined as: RF24NetworkHeader sleepHeader(/*to node*/ 00, /

→˓*type*/ 'S' /*Sleep*/);
137 case 'S':

(continues on next page)

10.7. Examples 57

RF24Network library, Release 1.0.16

(continued from previous page)

138 /*This is a sleep payload, do nothing*/
139 break;
140

141 default:
142 Serial.print(F("*** WARNING *** Unknown message type "));
143 Serial.println(header.type);
144 network.read(header, 0, 0);
145 break;
146 };
147 }
148

149 /***************************** CALLING THE NEW SLEEP FUNCTION ************************/
150

151 if (millis() - sleepTimer > awakeTime && NODE_ADDRESS) {
152 // Want to make sure the Arduino stays awake for a little while when data comes in.
153 // Do NOT sleep if master node.
154 Serial.println(F("Sleep"));
155 sleepTimer = millis(); // Reset the timer value
156 delay(100); // Give the Serial print some time to finish up
157 radio.stopListening(); // Switch to PTX mode. Payloads will be seen as ACK␣

→˓payloads, and the radio will wake up
158 network.sleepNode(8, 0); // Sleep the node for 8 cycles of 1second intervals
159 Serial.println(F("Awake"));
160 }
161

162 //Examples:
163 // network.sleepNode(cycles, interrupt-pin);
164 // network.sleepNode(0, 0); // The WDT is configured in this example to sleep␣

→˓in cycles of 1 second. This will sleep 1 second, or until a payload is received
165 // network.sleepNode(1, 255); // Sleep this node for 1 second. Do not wake up␣

→˓until then, even if a payload is received (no interrupt) Payloads will be lost.
166

167 /**** end sleep section ***/
168

169

170 unsigned long now = millis(); // Send a ping to the next node␣
→˓every 'interval' ms

171 if (now - last_time_sent >= interval) {
172 last_time_sent = now;
173

174 uint16_t to = 00; // Who should we send to? By␣
→˓default, send to base

175

176 if (num_active_nodes) { // Or if we have active nodes,
177 to = active_nodes[next_ping_node_index++]; // Send to the next active node
178 if (next_ping_node_index > num_active_nodes) { // Have we rolled over?
179 next_ping_node_index = 0; // Next time start at the beginning
180 to = 00; // This time, send to node 00.
181 }
182 }
183

184 bool ok;

(continues on next page)

58 Chapter 10. Site Index

RF24Network library, Release 1.0.16

(continued from previous page)

185

186 if (this_node > 00 || to == 00) { // Normal nodes send a 'T' ping
187 ok = send_T(to);
188 } else { // Base node sends the current␣

→˓active nodes out
189 ok = send_N(to);
190 }
191

192 if (ok) { // Notify us of the result
193 Serial.print(millis());
194 Serial.println(F(": APP Send ok"));
195 } else {
196 Serial.print(millis());
197 Serial.println(F(": APP Send failed"));
198 last_time_sent -= 100; // Try sending at a different time␣

→˓next time
199 }
200 }
201 }
202

203 /**
204 * Send a 'T' message, the current time
205 */
206 bool send_T(uint16_t to) {
207 RF24NetworkHeader header(/*to node*/ to, /*type*/ 'T' /*Time*/);
208

209 // The 'T' message that we send is just a ulong, containing the time
210 unsigned long message = millis();
211 Serial.println(F("---------------------------------"));
212 Serial.print(millis());
213 Serial.print(F(": APP Sending "));
214 Serial.print(message);
215 Serial.print(F(" to "));
216 Serial.print(to);
217 Serial.println(F("..."));
218 return network.write(header, &message, sizeof(unsigned long));
219 }
220

221 /**
222 * Send an 'N' message, the active node list
223 */
224 bool send_N(uint16_t to) {
225 RF24NetworkHeader header(/*to node*/ to, /*type*/ 'N' /*Time*/);
226

227 Serial.println(F("---------------------------------"));
228 Serial.print(millis());
229 Serial.print(F(": APP Sending active nodes to "));
230 Serial.print(to);
231 Serial.println(F("..."));
232 return network.write(header, active_nodes, sizeof(active_nodes));
233 }
234

(continues on next page)

10.7. Examples 59

RF24Network library, Release 1.0.16

(continued from previous page)

235 /**
236 * Handle a 'T' message
237 * Add the node to the list of active nodes
238 */
239 void handle_T(RF24NetworkHeader& header) {
240

241 unsigned long message; // The 'T' message is just␣
→˓a ulong, containing the time

242 network.read(header, &message, sizeof(unsigned long));
243 Serial.print(millis());
244 Serial.print(F(": APP Received "));
245 Serial.print(message);
246 Serial.print(F(" from "));
247 Serial.print(header.from_node);
248

249 if (header.from_node != this_node || header.from_node > 00) // If this message is from␣
→˓ourselves or the base, don't bother adding it to the active nodes.

250 add_node(header.from_node);
251 }
252

253 /**
254 * Handle an 'N' message, the active node list
255 */
256 void handle_N(RF24NetworkHeader& header)
257 {
258 static uint16_t incoming_nodes[max_active_nodes];
259

260 network.read(header, &incoming_nodes, sizeof(incoming_nodes));
261 Serial.print(millis());
262 Serial.print(F(": APP Received nodes from "));
263 Serial.println(header.from_node);
264

265 int i = 0;
266 while (i < max_active_nodes && incoming_nodes[i] > 00)
267 add_node(incoming_nodes[i++]);
268 }
269

270 /**
271 * Add a particular node to the current list of active nodes
272 */
273 void add_node(uint16_t node) {
274

275 short i = num_active_nodes; // Do we already know about this␣
→˓node?

276 while (i--) {
277 if (active_nodes[i] == node)
278 break;
279 }
280

281 if (i == -1 && num_active_nodes < max_active_nodes) { // If not, add it to the table
282 active_nodes[num_active_nodes++] = node;
283 Serial.print(millis());

(continues on next page)

60 Chapter 10. Site Index

RF24Network library, Release 1.0.16

(continued from previous page)

284 Serial.print(F(": APP Added "));
285 Serial.print(node);
286 Serial.print(F(" to list of active nodes."));
287 }
288 }

Network_Priority_TX.ino

1 /**
2 * Copyright (C) 2020 TMRh20(tmrh20@gmail.com)
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * version 2 as published by the Free Software Foundation.
7 */
8

9 /**
10 * This sketch demonstrates handling of external data
11 *
12 * RF24Network contains a buffer for storing user payloads that have been received via␣

→˓the network.update()
13 * function. If using protocols like TCP/IP over RF24Network, the memory on small␣

→˓devices is very limited.
14 * Instead of using the user-payload buffer for such large payloads, they can be␣

→˓designated as an
15 * EXTERNAL_DATA_TYPE in the header.type field. This allows users to prioritize these␣

→˓payloads, as they are
16 * often very large, and would take up most or all of the user data buffer.
17 *
18 * The network.update function will return immediately upon receiving a payload marked␣

→˓as EXTERNAL_DATA_TYPE
19 * Users can then process the data immediately.
20 * All other payload types are handled via the network.available() and network.read()␣

→˓functionality.
21 *
22 * Functionality:
23 * The TX node will send normal user data designated with header.type = 33, along with␣

→˓additional data
24 * marked as header.type = EXTERNAL_DATA_TYPE.
25 * The RX node demonstrates how to handle such data, allowing separation of standard␣

→˓data that is processed
26 * normally vs data that needs to be passed elsewhere, like network interface for TCP/IP␣

→˓packets.
27 * These methods are used in RF24Gateway & RF24Ethernet TCP/IP libraries for nrf24l01+.
28 */
29

30 #include <RF24.h>
31 #include <RF24Network.h>
32 #include "printf.h"
33

(continues on next page)

10.7. Examples 61

RF24Network library, Release 1.0.16

(continued from previous page)

34 RF24 radio(7, 8); // nRF24L01(+) radio attached using Getting Started␣
→˓board

35

36 RF24Network network(radio); // Network uses that radio
37

38 const uint16_t this_node = 01; // Address of our node in Octal format
39 const uint16_t other_node = 00; // Address of the other node in Octal format
40

41 uint8_t dataBuffer[33];
42

43 void setup() {
44

45 Serial.begin(115200);
46 printf_begin(); // needed for RF24* libs' internal printf() calls
47 while (!Serial) {
48 // some boards need this because of native USB capability
49 }
50 Serial.println(F("RF24Network/examples/Network_Separation_TX/"));
51

52 if (!radio.begin()) {
53 Serial.println(F("Radio hardware not responding!"));
54 while (1) {
55 // hold in infinite loop
56 }
57 }
58 radio.setChannel(90);
59 network.begin(/*node address*/ this_node);
60 radio.printDetails();
61

62 // Load our data buffer with numbered data
63 for (uint16_t i = 0; i < 33; i++) {
64 dataBuffer[i] = i;
65 }
66

67 }//setup
68

69

70 uint32_t sendTimer = 0;
71

72 /*
73 * The main loop sends two types of data to be processed with different priority per the␣

→˓RX
74 * example
75 */
76

77 void loop() {
78

79 network.update();
80

81 if (millis() - sendTimer > 1000) {
82 sendTimer = millis();
83

(continues on next page)

62 Chapter 10. Site Index

RF24Network library, Release 1.0.16

(continued from previous page)

84 Serial.println(F("Sending data..."));
85

86 // Sending of External data, which will be handled immediately
87 RF24NetworkHeader header(other_node, EXTERNAL_DATA_TYPE);
88 bool ok = network.write(header, &dataBuffer, 33);
89 Serial.println(ok ? F("OK 1") : F("Fail 1"));
90

91 // Sending normal user data, which may be buffered and handled later
92 RF24NetworkHeader header2(other_node, 32);
93 uint32_t someVariable = 1234;
94 ok = network.write(header2, &someVariable, sizeof(someVariable));
95 Serial.println(ok ? F("OK 2") : F("Fail 2"));
96 }
97

98 // Dummy operation to read 0 bytes from all incoming user payloads
99 // Ensures the buffer doesnt fill up

100 if (network.available()) {
101 RF24NetworkHeader header;
102 network.read(header, &dataBuffer, 0);
103 }
104

105 }//loop

Network_Priority_RX.ino

1 /**
2 * Copyright (C) 2020 TMRh20(tmrh20@gmail.com)
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * version 2 as published by the Free Software Foundation.
7 */
8

9 /**
10 * This sketch demonstrates handling of external data
11 *
12 * RF24Network contains a buffer for storing user payloads that have been received via␣

→˓the network.update()
13 * function. If using protocols like TCP/IP over RF24Network, the memory on small␣

→˓devices is very limited.
14 * Instead of using the user-payload buffer for such large payloads, they can be␣

→˓designated as an
15 * EXTERNAL_DATA_TYPE in the header.type field. This allows users to prioritize these␣

→˓payloads, as they are
16 * often very large, and would take up most or all of the user data buffer.
17 *
18 * The network.update function will return immediately upon receiving a payload marked␣

→˓as EXTERNAL_DATA_TYPE
19 * Users can then process the data immediately.
20 * All other payload types are handled via the network.available() and network.read()␣

→˓functionality.
(continues on next page)

10.7. Examples 63

RF24Network library, Release 1.0.16

(continued from previous page)

21 *
22 * Functionality:
23 * The TX node will send normal user data designated with header.type = 33, along with␣

→˓additional data
24 * marked as header.type = EXTERNAL_DATA_TYPE.
25 * The RX node demonstrates how to handle such data, allowing separation of standard␣

→˓data that is processed
26 * normally vs data that needs to be passed elsewhere, like network interface for TCP/IP␣

→˓packets.
27 * These methods are used in RF24Gateway & RF24Ethernet TCP/IP libraries for nrf24l01+.
28 */
29

30 #include "printf.h"
31 #include <RF24.h>
32 #include <RF24Network.h>
33

34 RF24 radio(7, 8); // nRF24L01(+) radio attached using Getting Started␣
→˓board

35

36 RF24Network network(radio); // Network uses that radio
37

38 const uint16_t this_node = 00; // Address of our node in Octal format
39 const uint16_t other_node = 01; // Address of the other node in Octal format
40

41 uint32_t myVariable = 0;
42

43 void setup() {
44

45 Serial.begin(115200);
46 printf_begin(); // needed for RF24* libs' internal printf() calls
47 while (!Serial) {
48 // some boards need this because of native USB capability
49 }
50 Serial.println(F("RF24Network/examples/Network_Separation_RX/"));
51

52 if (!radio.begin()) {
53 Serial.println(F("Radio hardware not responding!"));
54 while (1) {
55 // hold in infinite loop
56 }
57 }
58 radio.setChannel(90);
59 network.begin(/*node address*/ this_node);
60 radio.printDetails();
61

62 }//setup
63

64

65 uint32_t sendTimer = 0;
66

67 /* **** Create a large array for data to be received ****
68 * MAX_PAYLOAD_SIZE is defined in RF24Network_config.h

(continues on next page)

64 Chapter 10. Site Index

RF24Network library, Release 1.0.16

(continued from previous page)

69 * Payload sizes of ~1-2 KBytes or more are practical when radio conditions are good
70 */
71 #define EXTERNAL_DATA_MAX_SIZE MAX_PAYLOAD_SIZE
72

73 uint8_t dataBuffer[EXTERNAL_DATA_MAX_SIZE];
74

75 uint32_t userDataTimer = 0;
76

77

78 /*
79 * The main loop behaviour demonstrates the different prioritization of handling data
80 * External data is handled immediately upon reception, with the network.update()␣

→˓function being
81 * called very regularly to handle incoming/outgoing radio traffic.
82 *
83 * The network.available() function is only called every 5 seconds, to simulate a busy␣

→˓microcontroller,
84 * so the user payloads will only print out every 5 seconds
85 *
86 * The radio has 3, 32-byte FIFO buffers operating independantly of the MCU, and␣

→˓RF24Network will buffer
87 * up to MAX_PAYLOAD_SIZE (see RF24Network_config.h) of user data.
88 */
89 void loop() {
90

91 // Immediate handling of data with header type EXTERNAL_DATA_TYPE
92

93 if (network.update() == EXTERNAL_DATA_TYPE) {
94 uint16_t size = network.frag_ptr->message_size;
95 memcpy(&dataBuffer, network.frag_ptr->message_buffer, network.frag_ptr->message_

→˓size);
96

97 // Handle the external data however...
98 Serial.print(F("External Data RX, size: "));
99 Serial.println(network.frag_ptr->message_size);

100

101 for (uint16_t i = 0; i < network.frag_ptr->message_size; i++) {
102 Serial.print(dataBuffer[i]);
103 Serial.print(F(":"));
104 }
105 Serial.println();
106 }
107

108

109 // Use a timer to simulate a busy MCU where normal network data cannot be processed in␣
→˓a timely manner

110 if (millis() - userDataTimer > 5000) {
111 userDataTimer = millis();
112

113 // Handling of standard RF24Network User Data
114 while (network.available()) {
115

(continues on next page)

10.7. Examples 65

RF24Network library, Release 1.0.16

(continued from previous page)

116 RF24NetworkHeader header; // Create an empty␣
→˓header

117 uint16_t dataSize = network.peek(header); // Peek to get the␣
→˓size of the data

118 uint32_t someVariable;
119 if (header.type = 32) { // If a certain␣

→˓header type is recieved
120 network.read(header, &someVariable, sizeof(someVariable)); // Handle the data a␣

→˓specific way
121 Serial.print(F("RX User Data:\nHeader Type "));
122 Serial.print(header.type);
123 Serial.print(F(" Value "));
124 Serial.println(someVariable);
125 } else {
126 // Clear the user data from the buffer if some other header type is received
127 network.read(header, &someVariable, 0);
128 }
129 }
130 }
131 }//loop

10.7.2 Linux Examples

helloworld_tx.cpp

Listing 1: examples_RPi/helloworld_rx.cpp

1 /*
2 Update 2014 - TMRh20
3 */
4

5 /**
6 * Simplest possible example of using RF24Network,
7 *
8 * RECEIVER NODE
9 * Listens for messages from the transmitter and prints them out.

10 */
11

12 //#include <cstdlib>
13 #include <RF24/RF24.h>
14 #include <RF24Network/RF24Network.h>
15 #include <iostream>
16 #include <ctime>
17 #include <stdio.h>
18 #include <time.h>
19

20 using namespace std;
21

22 RF24 radio(22, 0); // (CE Pin, CSN Pin, [SPI Speed (in Hz)])
23

(continues on next page)

66 Chapter 10. Site Index

RF24Network library, Release 1.0.16

(continued from previous page)

24 RF24Network network(radio);
25

26 // Address of our node in Octal format (01,021, etc)
27 const uint16_t this_node = 01;
28

29 // Address of the other node
30 const uint16_t other_node = 00;
31

32 // How often (in milliseconds) to send a message to the `other_node`
33 const unsigned long interval = 2000;
34

35 unsigned long last_sent; // When did we last send?
36 unsigned long packets_sent; // How many have we sent already
37

38 struct payload_t { // Structure of our payload
39 unsigned long ms;
40 unsigned long counter;
41 };
42

43 int main(int argc, char **argv)
44 {
45 // Refer to RF24 docs or nRF24L01 Datasheet for settings
46

47 if (!radio.begin()) {
48 printf("Radio hardware not responding!\n");
49 return 0;
50 }
51

52 delay(5);
53 radio.setChannel(90);
54 network.begin(/*node address*/ this_node);
55 radio.printDetails();
56

57 while (1) {
58

59 network.update();
60 unsigned long now = millis(); // If it's time to send a message, send it!
61 if (now - last_sent >= interval) {
62 last_sent = now;
63

64 printf("Sending ..\n");
65 payload_t payload = {millis(), packets_sent++};
66 RF24NetworkHeader header(/*to node*/ other_node);
67 bool ok = network.write(header, &payload, sizeof(payload));
68 printf("%s.\n", ok ? "ok" : "failed");
69 }
70 }
71

72 return 0;
73 }

10.7. Examples 67

RF24Network library, Release 1.0.16

helloworld_rx.cpp

Listing 2: examples_RPi/helloworld_rx.cpp

1 /*
2 Update 2014 - TMRh20
3 */
4

5 /**
6 * Simplest possible example of using RF24Network,
7 *
8 * RECEIVER NODE
9 * Listens for messages from the transmitter and prints them out.

10 */
11

12 #include <RF24/RF24.h>
13 #include <RF24Network/RF24Network.h>
14 #include <iostream>
15 #include <ctime>
16 #include <stdio.h>
17 #include <time.h>
18

19

20 // CE Pin, CSN Pin, SPI Speed (Hz)
21 RF24 radio(22, 0);
22

23 RF24Network network(radio);
24

25 // Address of our node in Octal format
26 const uint16_t this_node = 00;
27

28 // Address of the other node in Octal format (01, 021, etc)
29 const uint16_t other_node = 01;
30

31 struct payload_t { // Structure of our payload
32 unsigned long ms;
33 unsigned long counter;
34 };
35

36 int main(int argc, char **argv)
37 {
38 // Refer to RF24 docs or nRF24L01 Datasheet for settings
39

40 if (!radio.begin()) {
41 printf("Radio hardware not responding!\n");
42 return 0;
43 }
44

45 delay(5);
46 radio.setChannel(90);
47 network.begin(/*node address*/ this_node);
48 radio.printDetails();
49

(continues on next page)

68 Chapter 10. Site Index

RF24Network library, Release 1.0.16

(continued from previous page)

50 while (1) {
51

52 network.update();
53 while (network.available()) { // Is there anything ready for us?
54

55 RF24NetworkHeader header; // If so, grab it and print it out
56 payload_t payload;
57 network.read(header, &payload, sizeof(payload));
58

59 printf("Received payload: counter=%lu, origin timestamp=%lu\n", payload.
→˓counter, payload.ms);

60 }
61 //sleep(2);
62 delay(2000);
63 }
64

65 return 0;
66 }

10.7.3 PicoSDK Examples

helloworld_tx

See also:

defaultPins.h

Listing 3: examples_pico/helloworld_tx.cpp

1 /**
2 * Simplest possible example of using RF24Network,
3 *
4 * TRANSMITTER NODE
5 * Transmits messages to the reciever every 2 seconds.
6 */
7 #include "pico/stdlib.h" // printf(), sleep_ms(), to_ms_since_boot(), get_absolute_

→˓time()
8 #include <tusb.h> // tud_cdc_connected()
9 #include <RF24.h> // RF24 radio object

10 #include <RF24Network.h> // RF24Network network object
11 #include "defaultPins.h" // board presumptive default pin numbers for CE_PIN and CSN_PIN
12

13 // instantiate an object for the nRF24L01 transceiver
14 RF24 radio(CE_PIN, CSN_PIN);
15

16 RF24Network network(radio);
17

18 // Address of our node in Octal format (01,021, etc)
19 const uint16_t this_node = 01;
20

21 // Address of the other node
(continues on next page)

10.7. Examples 69

default_pins.html

RF24Network library, Release 1.0.16

(continued from previous page)

22 const uint16_t other_node = 00;
23

24 // How often (in milliseconds) to send a message to the `other_node`
25 const unsigned long interval = 2000;
26

27 unsigned long last_sent; // When did we last send?
28 unsigned long packets_sent; // How many have we sent already
29

30 struct payload_t { // Structure of our payload
31 unsigned long ms;
32 unsigned long counter;
33 };
34

35

36 bool setup()
37 {
38 // wait here until the CDC ACM (serial port emulation) is connected
39 while (!tud_cdc_connected()) {
40 sleep_ms(10);
41 }
42

43 // initialize the transceiver on the SPI bus
44 if (!radio.begin()) {
45 printf("radio hardware is not responding!!\n");
46 return false;
47 }
48

49 radio.setChannel(90);
50 network.begin(/*node address*/ this_node);
51

52 // print example's introductory prompt
53 printf("RF24Network/examples_pico/helloworld_tx\n");
54

55 // For debugging info
56 // radio.printDetails(); // (smaller) function that prints raw register values
57 // radio.printPrettyDetails(); // (larger) function that prints human readable data
58

59 return true;
60 } // setup
61

62

63 void loop()
64 {
65 network.update();
66 unsigned long now = to_ms_since_boot(get_absolute_time());
67 if (now - last_sent >= interval) { // If it's time to send a message, send it!
68 last_sent = now;
69

70 printf("Sending ..\n");
71 payload_t payload = {now, packets_sent++};
72 RF24NetworkHeader header(/*to node*/ other_node);
73 bool ok = network.write(header, &payload, sizeof(payload));

(continues on next page)

70 Chapter 10. Site Index

RF24Network library, Release 1.0.16

(continued from previous page)

74 printf("%s.\n", ok ? "ok" : "failed");
75 }
76 }
77

78 int main()
79 {
80 stdio_init_all(); // init necessary IO for the RP2040
81

82 while (!setup()) { // if radio.begin() failed
83 // hold program in infinite attempts to initialize radio
84 }
85 while (true) {
86 loop();
87 }
88 return 0; // we will never reach this
89 }

helloworld_rx

See also:

defaultPins.h

Listing 4: examples_pico/helloworld_rx.cpp

1 /**
2 * Simplest possible example of using RF24Network,
3 *
4 * RECEIVER NODE
5 * Listens for messages from the transmitter and prints them out.
6 */
7 #include "pico/stdlib.h" // printf(), sleep_ms(), to_ms_since_boot(), get_absolute_

→˓time()
8 #include <tusb.h> // tud_cdc_connected()
9 #include <RF24.h> // RF24 radio object

10 #include <RF24Network.h> // RF24Network network object
11 #include "defaultPins.h" // board presumptive default pin numbers for CE_PIN and CSN_PIN
12

13 // instantiate an object for the nRF24L01 transceiver
14 RF24 radio(CE_PIN, CSN_PIN);
15

16 RF24Network network(radio);
17

18 // Address of our node in Octal format
19 const uint16_t this_node = 00;
20

21 // Address of the other node in Octal format (01, 021, etc)
22 const uint16_t other_node = 01;
23

24 struct payload_t { // Structure of our payload
25 unsigned long ms;
26 unsigned long counter;

(continues on next page)

10.7. Examples 71

default_pins.html

RF24Network library, Release 1.0.16

(continued from previous page)

27 };
28

29

30 bool setup()
31 {
32 // wait here until the CDC ACM (serial port emulation) is connected
33 while (!tud_cdc_connected()) {
34 sleep_ms(10);
35 }
36

37 // initialize the transceiver on the SPI bus
38 if (!radio.begin()) {
39 printf("radio hardware is not responding!!\n");
40 return false;
41 }
42

43 radio.setChannel(90);
44 network.begin(/*node address*/ this_node);
45

46 // print example's introductory prompt
47 printf("RF24Network/examples_pico/helloworld_rx\n");
48

49 // For debugging info
50 // radio.printDetails(); // (smaller) function that prints raw register values
51 // radio.printPrettyDetails(); // (larger) function that prints human readable data
52

53 return true;
54 } // setup
55

56

57 void loop()
58 {
59 network.update();
60 while (network.available()) { // Is there anything ready for us?
61 // If so, grab it and print it out
62 RF24NetworkHeader header;
63 payload_t payload;
64 network.read(header, &payload, sizeof(payload));
65

66 printf("Received payload: counter=%lu, origin timestamp=%lu\n", payload.counter,␣
→˓payload.ms);

67 }
68 }
69

70 int main()
71 {
72 stdio_init_all(); // init necessary IO for the RP2040
73

74 while (!setup()) { // if radio.begin() failed
75 // hold program in infinite attempts to initialize radio
76 }
77 while (true) {

(continues on next page)

72 Chapter 10. Site Index

RF24Network library, Release 1.0.16

(continued from previous page)

78 loop();
79 }
80 return 0; // we will never reach this
81 }

PicoSDK Examples’ Default Pins

1 // pre-chossen pins for different boards
2 #ifndef DEFAULTPINS_H
3 #define DEFAULTPINS_H
4

5 #if defined (ADAFRUIT_QTPY_RP2040)
6 // for this board, you can still use the Stemma QT connector as a separate I2C bus␣

→˓(`i2c1`)
7 #define CE_PIN PICO_DEFAULT_I2C_SDA_PIN // the pin labeled SDA
8 #define CSN_PIN PICO_DEFAULT_I2C_SCL_PIN // the pin labeled SCL
9

10 #elif defined (PIMORONI_TINY2040)
11 // default SPI_SCK_PIN = 6
12 // default SPI_TX_PIN = 7
13 // default SPI_RX_PIN = 4
14 #define CE_PIN PICO_DEFAULT_I2C_SCL_PIN // pin 3
15 #define CSN_PIN PICO_DEFAULT_SPI_CSN_PIN // pin 5
16

17

18 #elif defined (SPARFUN_THINGPLUS)
19 #define CSN_PIN 16 // the pin labeled 16
20 #define CE_PIN 7 // the pin labeled SCL
21

22 #else
23 // pins available on (ADAFRUIT_ITSYBITSY_RP2040 || ADAFRUIT_FEATHER_RP2040 || Pico_board␣

→˓|| Sparkfun_ProMicro || SparkFun MicroMod)
24

25 #define CE_PIN 7
26 #define CSN_PIN 8
27 #endif // board detection macro defs
28

29 #endif // DEFAULTPINS_H

10.7.4 Python Examples

helloworld_tx.py

Listing 5: RPi/pyRF24Network/examples/helloworld_tx.py

1 """Simplest possible example of using RF24Network in RX role.
2 Sends messages from to receiver.
3 """
4 import time

(continues on next page)

10.7. Examples 73

RF24Network library, Release 1.0.16

(continued from previous page)

5 import struct
6 from RF24 import RF24
7 from RF24Network import RF24Network, RF24NetworkHeader
8

9

10 ########### USER CONFIGURATION ###########
11 # See https://github.com/TMRh20/RF24/blob/master/pyRF24/readme.md
12 # Radio CE Pin, CSN Pin, SPI Speed
13 # CE Pin uses GPIO number with BCM and SPIDEV drivers, other platforms use
14 # their own pin numbering
15 # CS Pin addresses the SPI bus number at /dev/spidev<a>.
16 # ie: RF24 radio(<ce_pin>, <a>*10+); spidev1.0 is 10, spidev1.1 is 11 etc..
17

18 # Generic:
19 radio = RF24(22, 0)
20 ################## Linux (BBB,x86,etc) #########################
21 # See http://nRF24.github.io/RF24/pages.html for more information on usage
22 # See http://iotdk.intel.com/docs/master/mraa/ for more information on MRAA
23 # See https://www.kernel.org/doc/Documentation/spi/spidev for more
24 # information on SPIDEV
25

26 # instantiate the network node using `radio` object
27 network = RF24Network(radio)
28

29 # Address of our node in Octal format (01,021, etc)
30 this_node = 0o1
31

32 # Address of the other node
33 other_node = 0o0
34

35 # How long to wait before sending the next message
36 interval = 2000 # in milliseconds
37

38 # initialize the radio
39 if not radio.begin():
40 raise RuntimeError("radio hardware not responding")
41

42 radio.channel = 90
43

44 # initialize the network node
45 network.begin(this_node)
46

47 # radio.printDetails()
48 radio.printPrettyDetails()
49 packets_sent = 0
50 last_sent = 0
51

52 while 1:
53 network.update()
54 now = time.monotonic_ns() / 1000
55 # If it's time to send a message, send it!
56 if now - last_sent >= interval:

(continues on next page)

74 Chapter 10. Site Index

RF24Network library, Release 1.0.16

(continued from previous page)

57 last_sent = now
58 payload = struct.pack('<LL', now, packets_sent)
59 packets_sent += 1
60 ok = network.write(RF24NetworkHeader(other_node), payload)
61 print("Sending %d..." % packets_sent, "ok." if ok else "failed.")

helloworld_rx.py

Listing 6: RPi/pyRF24Network/examples/helloworld_rx.py

1 """Simplest possible example of using RF24Network in RX role.
2 Listens for messages from the transmitter and prints them out.
3 """
4 import time
5 import struct
6 from RF24 import RF24
7 from RF24Network import RF24Network
8

9

10 ########### USER CONFIGURATION ###########
11 # See https://github.com/TMRh20/RF24/blob/master/pyRF24/readme.md
12 # Radio CE Pin, CSN Pin, SPI Speed
13 # CE Pin uses GPIO number with BCM and SPIDEV drivers, other platforms use
14 # their own pin numbering
15 # CS Pin addresses the SPI bus number at /dev/spidev<a>.
16 # ie: RF24 radio(<ce_pin>, <a>*10+); spidev1.0 is 10, spidev1.1 is 11 etc..
17

18 # Generic:
19 radio = RF24(22, 0)
20 ################## Linux (BBB,x86,etc) #########################
21 # See http://nRF24.github.io/RF24/pages.html for more information on usage
22 # See http://iotdk.intel.com/docs/master/mraa/ for more information on MRAA
23 # See https://www.kernel.org/doc/Documentation/spi/spidev for more
24 # information on SPIDEV
25

26 # instantiate the network node using `radio` object
27 network = RF24Network(radio)
28

29 # Address of our node in Octal format (01, 021, etc)
30 this_node = 0o0
31

32 # Address of the other node
33 other_node = 0o1
34

35 # initialize the radio
36 if not radio.begin():
37 raise RuntimeError("radio hardware not responding")
38

39 radio.channel = 90
40

41 # initialize the network node
(continues on next page)

10.7. Examples 75

RF24Network library, Release 1.0.16

(continued from previous page)

42 network.begin(this_node)
43

44 # radio.printDetails()
45 radio.printPrettyDetails()
46

47 radio.startListening() # put radio in RX mode
48 start = time.monotonic()
49 while time.monotonic() - start <= 6: # listen for 6 seconds
50 network.update()
51 while network.available():
52 header, payload = network.read(8)
53 print("payload length ", len(payload))
54 millis, number = struct.unpack('<LL', bytes(payload))
55 print(
56 "Received payload {} from {} to {} at (origin's timestamp) {}".format(
57 number,
58 oct(header.from_node),
59 oct(header.to_node),
60 millis,
61)
62)
63 start = time.monotonic()
64 time.sleep(0.05)

76 Chapter 10. Site Index

INDEX

E
ENABLE_DYNAMIC_PAYLOADS (C macro), 33
EXTERNAL_DATA_TYPE (C macro), 40

M
MAIN_BUFFER_SIZE (C macro), 33
MAX_PAYLOAD_SIZE (C macro), 32

N
NETWORK_ACK (C macro), 41
NETWORK_ADDR_RESPONSE (C macro), 40
NETWORK_AUTO_ROUTING (C macro), 32
NETWORK_DEFAULT_ADDRESS (C macro), 32
NETWORK_FIRST_FRAGMENT (C macro), 40
NETWORK_LAST_FRAGMENT (C macro), 40
NETWORK_MORE_FRAGMENTS (C macro), 40
NETWORK_MULTICAST_ADDRESS (C macro), 32
NETWORK_PING (C macro), 40
NETWORK_POLL (C macro), 41
NETWORK_REQ_ADDRESS (C macro), 41

R
RF24Network (C++ class), 21
RF24Network::_multicast_level (C++ member), 29
RF24Network::addressOfPipe (C++ function), 25
RF24Network::available (C++ function), 22
RF24Network::begin (C++ function), 21, 22
RF24Network::external_queue (C++ member), 27
RF24Network::failures (C++ function), 24
RF24Network::frag_ptr (C++ member), 28
RF24Network::frame_buffer (C++ member), 27
RF24Network::is_valid_address (C++ function), 25
RF24Network::multicast (C++ function), 24
RF24Network::multicastLevel (C++ function), 26
RF24Network::multicastRelay (C++ member), 26
RF24Network::networkFlags (C++ member), 28
RF24Network::node_address (C++ member), 29
RF24Network::parent (C++ function), 25
RF24Network::peek (C++ function), 23
RF24Network::read (C++ function), 22
RF24Network::returnSysMsgs (C++ member), 28

RF24Network::RF24Network::RF24Network (C++
function), 21

RF24Network::routeTimeout (C++ member), 26
RF24Network::setup_watchdog (C++ function), 27
RF24Network::sleepNode (C++ function), 24
RF24Network::txTimeout (C++ member), 26
RF24Network::update (C++ function), 22
RF24Network::write (C++ function), 23, 24
RF24NetworkFrame (C++ struct), 29
RF24NetworkFrame::header (C++ member), 30
RF24NetworkFrame::message_buffer (C++ mem-

ber), 30
RF24NetworkFrame::message_size (C++ member),

30
RF24NetworkFrame::RF24NetworkFrame (C++ func-

tion), 30
RF24NetworkHeader (C++ struct), 30
RF24NetworkHeader::from_node (C++ member), 31
RF24NetworkHeader::id (C++ member), 31
RF24NetworkHeader::next_id (C++ member), 32
RF24NetworkHeader::reserved (C++ member), 32
RF24NetworkHeader::RF24NetworkHeader (C++

function), 31
RF24NetworkHeader::to_node (C++ member), 31
RF24NetworkHeader::toString (C++ function), 31
RF24NetworkHeader::type (C++ member), 31
RF24NetworkMulticast (C macro), 32

S
SLOW_ADDR_POLL_RESPONSE (C macro), 32

77

	Purpose/Goal
	News
	Features
	The layer provides
	The layer does not provide

	How to learn more
	Additional Information & Add-ons

	Topology for Mesh Networks using nRF24L01(+)
	Octal Addressing and Topology
	How routing is handled
	Starting up a node
	Directionality
	Site Index
	RF24Network class
	Basic API
	Advanced API
	Configuration API
	External Applications/Systems
	Protected Members

	Network Payload Structures
	RF24Network_config.h
	Deprecated API
	Related Pages
	Contributing
	Addressing Format: Understanding Addressing and Topology
	Overview
	Decimal, Octal and Binary formats
	Decimal, Octal and Binary

	Displaying Addresses

	Advanced Configuration
	Performance and Data Loss: Tuning the Network
	Understanding Radio Communication and Topology
	Topology of RF24Network
	Expressing RF24Network addresses in IP format

	Multicast
	Routing
	Tuning Overview
	Auto-Retry Timing
	Auto-Retry Count and Extended Timeouts
	Scenarios
	Example 1
	Example 2

	Comparison to ZigBee
	Which is better?
	Similiarities & Differences
	Node Naming

	Reserved System Message Types
	Examples
	Arduino Examples
	helloworld_tx.ino
	helloworld_rx.ino
	helloworld_tx_advanced.ino
	helloworld_rx_advanced.ino
	Network_Ping.ino
	Network_Ping_Sleep.ino
	Network_Priority_TX.ino
	Network_Priority_RX.ino

	Linux Examples
	helloworld_tx.cpp
	helloworld_rx.cpp

	PicoSDK Examples
	helloworld_tx
	helloworld_rx
	PicoSDK Examples’ Default Pins

	Python Examples
	helloworld_tx.py
	helloworld_rx.py

	Index

